
138 CHAPTER5 GENERICS

The type bound <E extends Comparabl e<E>> may be read as "any type E that can

be compared to itself," which corresponds more or less precisely to the notion of

mutual comparabilitY.

Here is a method to go with the previous declaration. It calculates the maxi-

mum value in a collection according to its elements' natural order, and it compiles

without effors or warnings:

// Returns max value in a collection - uses recursive type bound

puoti. static <E extends comparable<E>> E max(Collection<E> c) {
if (c.isEmptyO)

throw new IllegalArgumentException("Empty collection") ;

E result = null I

for(Ee:c)
if (result == flull I I e.compareTo(result) > 0)

resul t = Objects ' requi reNonNul I (e) ;

return result;
i

Note that this method throws Il l egalArgumentExcepti on if the list is empty' A

better alternative would be to return an Opt'ional <E> (Item 55)'

Recursive type bounds can get much more complex, but luckily they rarely

do. If you understand this idiom, its wildcard variant (Item 31), and the simulated

self-type idiom (Item 2), you'll be able to deal with most of the recursive type

bounds you encounter in Practice.
In summary, generic methods, like generic types, are safer and easier to use

than methods requiring their clients to put explicit casts on input parameters and

return values. Like types, you should make sure that your methods can be used

without casts, which often means making them generic. And like types, you

should generify existing methods whose use requires casts. This makes life easier

for new users without breaking existing clients (Item 26).

ITEM 31: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY I39

rtem 31: use bounded wildcards to increase Apr flexibility

As noted in Item 2S,parameteized, types are invariant.In other words, for any
two distinct types Typel and Type2, List<Typel> is neither a subtype nor a
supertype of List<Type2>. Although it is counterintuitive that List<string> is
not a subtype of Li st<Object>, it really does make sense. you can put any object
into a List<Object>, but you can put only strings into a List<string>. Since a
List<string> can't do everything a List<object> can, it isn't a subtype (by the
Liskov substitution principal, Item 10).

sometimes you need more flexibility than invariant typing can provide. con-
sider the stack class from ltem29. To refresh your memory, here is its public ApI:

public class Stack<E> {
public StackO;
pubf ic void push(E e);
pubfic E popO;
public boolean isEmptyO ;

]
Suppose we want to add a method that takes a sequence of elements and

pushes them all onto the stack. Here's a first attempt:

// pushAll method without wildcard type - deficient!
pub'li c vo'id pushAl I (Iterabl e<E> src) {for(Ee:src)

push(e);
i

This method compiles cleanly, but it isn't entirely satisfactory. If the element type
of the rterabl e src exactly matches that of the stack, it works fine. But suppose
you have a stack<Number> and you invoke push(intva'l), where intVal is of
type rnteger. This works because rnteger is a subtype of Number. so logically, it
seems that this should work, too:

Stack<Number> numberStack = new Stack+O;
Iterable<Integer> integers = ... ;
numberStack. pushAl 1 (i ntegers) ;

If you try it, however, you'll get this enor message because parametefized types
are invariant:

StackTest. java:7 : error:'incompatible types: Iterable<Integer>
cannot be converted to Ïterable<Number>

numberStack. pushAl I (i ntegers) ;

^



I4O CHAPTER 5 GENERICS

Luckily, there's a way out. The language provides a special kind of parameter-

ized type call abounded wildcard type to deal with situations like this. The type of

the input parameter to pushAl I should not be "Iterabl e of E" but "Iterabl e of

some subtype of E," and there is a wildcard type that means precisely that: Iter-
abl e<? extends E>. (The use of the keyword extends is slightly misleading:

recall from ltem29 that subtype is defined so that every type is a subtype of itself,

even though it does not extend itself.) Let's modify pushAl l to use this type:

// Wildcard type for a parameter that serves as an E producer
public void pushAll (Iterable<? extends E> src) {

for(Ee:src)
push(e);

]

With this change, not only does Stack compile cleanly, but so does the client code

that wouldn't compile with the original pushAll declaration. Because Stack and

its client compile cleanly, you know that everything is typesafe.

Now suppose you want to write a popAll method to go with pushAll. The

popAl I method pops each element off the stack and adds the elements to the given

collection. Here's how a first attempt at writing the popAl l method might look:

// popAll method without wildcard type - deficient!
publ i c voi d popAl I (Col I ecti on<E> dst) {

while (!isEmptyO)
dst.add(popO);

]

Again, this compiles cleanly and works fine if the element type of the destination

collection exactly matches that of the stack. But again, it isn't entirely satisfactory.

Suppose you have a Stack<Number> and variable oftype Object. Ifyou pop an

element from the stack and store it in the variable, it compiles and runs without

enor. So shouldn't you be able to do this, too?

Stack<Number> numberStack = new Stack<Number>O ;

Collection<Object> objects = - '. ;

numbe rStack . popAl I (obj ects) ;

If you try to compile this client code against the version of popAl l shown earlier,

you'll get an effor very similar to the one that we got with our first version of
pushAll: Collection<Object> is not a subtype of Collection<Number>. Once

again, wildcard types provide a way out. The type of the input parameter to

]TEM 3]: USE BOUNDEDWILDCARDSTO INCREASEAPI FLEXIBILITV 14I

popA]l should not be "collection of E" but "collection of some supertype of E"
(where supertype is defined such that E is a supertype of itself [JLS, 4.10]). Again,
there is a wildcard type that means precisely that: col I ecti on<? super E>. Let's
modify popA1l to use it:

// Wildcard type for parameter that serves
public void popAll(Collection<? super E> ds

while (!isEmptyO)
dst.add(popO);

1
J

as
t)

an E consumer
{

With this change, both Stack and the client code compile cleanly.
The lesson is clear. For maximum flexibility, use wildcard types on input

parameters that represent producers or consumers. If an input parameter is
both a producer and a consumer, then wildcard types will do you no good: you
need an exact type match, which is what you get without any wildcards.

Here is a mnemonic to help you remember which wildcard type to use:

PECS stands for producer-extends, consumer- supe n

In other words, if a parameterized type represents a T producer, use <? extends T>;
if it represents a T consumer, use <? super T>. In our Stack example, pushAl 1's
src parameter produces E instances for use by the stack, so the appropriate type
for s rc is rte rabl e<? extends E>; popAl I 's dst parameter consumes E instances
from the Stack, so the appropriate type for dst is Collection<? super E>. The
PECS mnemonic captures the fundamental principle that guides the use of wild-
card types. Naftalin and wadler call it the Get and Put Principle [NaftalinOT ,2.4].

With this mnemonic in mind,let's take a look at some method and constructor
declarations from previous items in this chapter. The Chooser constructor in
Item 28 has this declaration:

publ i c Chooser(Col lection<T> choi ces)

This constructor uses the collection choi ces only to produce values of type T
(and stores them for later use), so its declaration should use a wildcard type that
extends T. Here's the resulting constructor declaration:

// Wi'ldcard type for parameter that serves as an T producer
publ i c Chooser(Col I ection<? extends T> choi ces)

And would this change make any difference in practice? Yes, it would.
Suppose you have a Li st<Integer>, and you want to pass it in to the constructor



I4O CHAPTER 5 GENERICS

Luckily, there's a way out. The language provides a special kind of parameter-

ized type call a bounded wildcard type to deal with situations like this. The type of

the input parameter to pushAll should not be "Iterabl e of E" but "Iterabl e of

some subtype of E," and there is a wildcard type that means precisely that: Iter-
abl e<? extends E>. (The use of the keyword extends is slightly misleading:

recall from ltem29 thal subtype is defined so that every type is a subtype of itself,

even though it does not extend itself.) Let's modify pushAl l to use this type:

// Vltldcard type for a parameter that serves as an E producer
pub'lic void pushAll(Iterable<? extends E> src) {

for(Ee:src)
push(e);

]

With this change, not only does Stack compile cleanly, but so does the client code

that wouldn't compile with the original pushAll declaration. Because Stack and

its client compile cleanly, you know that everything is typesafe.

Now suppose you want to write a popAl l method to go with pushAl l The

popAl l method pops each element off the stack and adds the elements to the given

collection. Here's how a first attempt at writing the popAl I method might look:

// pop/.ll method without wildcard type - deficient!
publ i c voi d popAl I (Col I ecti on<E> dst) {

while (!isEmptyO)
dst.add(popO);

]

Again, this compiles cleanly and works fine if the element type of the destination

collection exactly matches that of the stack. But again, it isn't entirely satisfactory.

Suppose you have a Stack<Number> and variable oftype Object' Ifyou pop an

element from the stack and store it in the variable, it compiles and runs without

enor. So shouldn't you be able to do this, too?

Stack<Number> numberStack = new Stack<Number>O ;

Collection<Object> objects = ... ;

numberStack. popAl I (objects) ;

If you try to compile this client code against the version of popAl I shown earlier,

you'll get an effor very similar to the one that we got with our first version of
pushAll: Collection<Object> is not a subtype of Collection<Number>. Once

again, wildcard types provide a way out. The type of the input parameter to

ITEM 3 ] : USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY I41

popAl1 should not be "collection of E" but "collection of some superlype of E"
(where supertype is defined such that E is a supertype of itself [JLS, 4.10]). Again,
there is a wildcard type that means precisely that: Collection<? super E>. Let's
modify popAl I to use it:

// Wildcard type for parameter that serves as an E consumer
public void popAll(Collection<? super E> dst) {

while (!isEmptyO)
dst.add(popO);

]

With this change, both Stack and the client code compile cleanly.
The lesson is clear. For maximum flexibility, use wildcard types on input

parameters that represent producers or consumers. If an input parameter is
both a producer and a consumer, then wildcard types will do you no good: you
need an exact type match, which is what you get without any wildcards.

Here is a mnemonic to help you remember which wildcard type to use:

PECS stands for producer-extends, consumer-s upe n

In other words, if a parameterized type represents a T producer, use <? extends T>;
if it represents a T consumer, use <? super T>. In our Stack example, pushA'l 1's
src parameter produces E instances for use by the Stack, so the appropriate type
for s rc is rte rabl e<? extends E>; popAl I 's dst parameter consumes E instances
from the Stack, so the appropriate type for dst is Collection<? super E>. The
PECS mnemonic captures the fundamental principle that guides the use of wild-
card types. Naftalin and wadler call it the Get and Put principle [NaftalinO7,2.4l.

With this mnemonic in mind, let's take a look at some method and constructor
declarations from previous items in this chapter. The Chooser constructor in
Item 28 has this declaration:

publ ic Chooser(Col lection<T> choi ces)

This constructor uses the collection choi ces only to produce values of type T
(and stores them for later use), so its declaration should use a wildcard type that
extends T. Here's the resulting constructor declaration:

// Vlildcard type for parameter that serves as an T producer
public Chooser(Collection<? extends T> choices)

And would this change make any difference in practice? yes, it would.
Suppose you have a Li st<rnteger>, and you want to pass it in to the constructor



ITEM 3]: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY I43

argument ULS, 15.121. Even prior to the introduction of target typing in Java 8,

this isn't something that you had to do often, which is good because explicit type
arguments aren't very pretty. With the addition of an explicit type argument, as

shown here, the code fragment compiles cleanly in versions prior to Java 8:

// Explicit type parameter - required prior to Java 8
Set<Number> numbers = Union.<Number>union(integers, doubles) ;

Next let's turn our attention to the max method in Item 30. Here is the original
declaration:

public static <T extends Comparable<T>> T max(List<T> list)

Here is a revised declaration that uses wildcard types

public static <T extends Comparable<? super T>> T max(
List<? extends T> list)

To get the revised declaration from the original, we applied the PECS heuris-
tic twice. The straightforward application is to the parameter I i st. It produces T

instances, so we change the type from List<T> to List<? extends T>. The tricky
application is to the type parameter T. This is the first time we've seen a wildcard
applied to a type parameter. Originally, T was specified to extend Comparabl e<T>,

but a comparable of T consumes T instances (and produces integers indicating
order relations). Therefore, the parameterized type Comparable<T> is replaced by
the bounded wildcard type Comparable<? super T>. Comparables are always
consumers, so you should generally use Comparable<? super T> in preference to
Comparabl e<T>. The same is true of comparators; therefore, you should generally
use Conparator<? super T> in preference to Comparator<T>.

The revised max declaration is probably the most complex method declaration
in this book. Does the added complexity really buy you anything? Again, it does.

Here is a simple example of a list that would be excluded by the original declara-
tion but is permitted by the revised one:

Li st<Schedul edFuture<?>> schedul edFutures =

The reason that you can't apply the original method declaration to this list is
that ScheduledFuture does not implement Comparable<ScheduledFuture>.
Instead, it is a subinterface of Del ayed, which extends Comparabl e<De1 ayed>. In
other words, a ScheduledFuture instance isn't merely comparable to other

I

I42 CHAPTER5 GENERICS

for a Chooser<Number>. This would not compile with the original declaration, but

it does once you add the bounded wildcard type to the declaration.

Now let's look at the uni on method from ltem 30. Here is the declaration:

public static <E> Set<E> union(Set<E> s1, Set<E> s2)

Both parameters, s1 and s2, are E producers, so the PECS mnemonic tells us that

the declaration should be as follows:

public static <E> Set<E> union(Set<? extends E> sl,
Set<? extends E> s2)

Note that the retum type is still Set<E>. Do not use bounded wildcard types as

return types. Rather than providing additional flexibility for your users, it would

force them to use wildcard types in client code. With the revised declaration, this

code will compile cleanly:

set<fnteger> integers = Set.of(1-, 3, 5);
Set<Double> doubles = Set.of(2.0, 4.0, 6.0);
Set<Number> numbers = union(integers, doubles);

Properly used, wildcard types are nearly invisible to the users of a class. They

cause methods to accept the parameters they should accept and reject those they

should reject. If the user of a class has to think about wildcard types, there is
probably something wrong with its API.

Prior to Java 8, the type inference rules were not clever enough to handle the

previous code fragment, which requires the compiler to use the contextually spec-

ified return type (or target type) to infer the type of E. The target type of the uni on

invocation shown earlier is Set<Number>. If you try to compile the fragment in an

earlier version of Java (with an appropriate replacement for the Set. of factory),
you'll get a long, convoluted error message like this:

Union.java:l-4: error: incompatible types
Set<Number> numbers = union(integers, doubles);

^requi red: Set<Number>
found: Set<INT#l>
where INT#I-,INT#Z are intersection types:

INT#I extends Number,Comparable<? extends INT#2>
INT#2 extends Number,Comparable<?>

Luckily there is a way to deal with this sort of enor. If the compiler doesn't

infer the correct type, you can always tell it what type to use with an explicit type

I



ITEM 3 ] : USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY I43

argument [JLS, 15.12]. Even prior to the introduction of target typing in Java 8,

this isn't something that you had to do often, which is good because explicit type
arguments aren't very pretty. With the addition of an explicit type argument, as

shown here, the code fragment compiles cleanly in versions prior to Java 8:

// Explicit type parameter - required prior to Java 8
Set<Number> numbers = Union.<Number>union(integers, doubles) ;

Next let's turn our attention to the max method in Item 30. Here is the original
declaration:

public static <T extends Comparable<T>> T max(List<T> list)

Here is a revised declaration that uses wildcard types:

public static <T extends Comparable<? super T>> T max(
List<? extends T> 'list)

To get the revised declaration from the original, we applied the PECS heuris-
tic twice. The straightforward application is to the parameter I i st. It produces T

instances, so we change the type from List<T> to List<? extends T>. The tricky
application is to the type parameter T. This is the first time we've seen a wildcard
applied to a type parameter. Originally, T was specified to extend Comparabl e<T>,

but a comparable of T consumes T instances (and produces integers indicating
order relations). Therefore, the parameterized type Comparable<T> is replaced by
the bounded wildcard type Comparable<? super T>. Comparables are always
consumers, so you should generally use Comparabl e<? super T> in preference to
Comparabl e<T>. The same is true of comparators; therefore, you should generally
use Conparator<? super T> in preference to Comparator<T>.

The revised max declaration is probably the most complex method declaration
in this book. Does the added complexity really buy you anything? Again, it does.

Here is a simple example of a list that would be excluded by the original declara-
tion but is permitted by the revised one:

List<ScheduledFuture<?>> scheduledFutures =

The reason that you can't apply the original method declaration to this list is
that ScheduledFuture does not implement Comparable<ScheduledFuture>.
Instead, it is a subinterface of Del ayed, which extends Comparabl e<De1 ayed>. In
other words, a ScheduledFuture instance isn't merely comparable to other

I42 CHAPTER5 GENERICS

for a Chooser<Number>. This would not compile with the original declaration, but

it does once you add the bounded wildcard type to the declaration.

Now let's look at the uni on method from Item 30. Here is the declaration:

public static <E> Set<E> union(Set<E> s1, Set<E> s2)

Both parameters, sl and s2, are E producers, so the PECS mnemonic tells us that

the declaration should be as follows:

public static <E> Set<E> union(Set<? extends E> sl,
Set<? extends E> s2)

Note that the return type is still Set<E>. Do not use bounded wildcard types as

return types. Rather than providing additional flexibility for your users, it would

force them to use wildcard types in client code. With the revised declaration, this

code will compile cleanly:

Set<Integer> integers = Set.of(1-, 3, 5);
Set<Double> doubles = Set.of(2.0, 4.O, 6.0);
Set<Number> numbers = union(integers, doubles);

Properly used, wildcard types are nearly invisible to the users of a class. They

cause methods to accept the parameters they should accept and reject those they

should reject. If the user of a class has to think about wildcard types, there is
probably something wrong with its API.

Prior to Java 8, the type inference rules were not clever enough to handle the

previous code fragment, which requires the compiler to use the contextually spec-

ified return type (or target type) to infer the type of E. The target type of the union

invocation shown earlier is Set<Number>. If you try to compile the fragment in an

earlier version of Java (with an appropriate replacement for the Set. of factory),

you'll get a long, convoluted error message like this:

Union.java:14: error: incompatible types
Set<Number> numbers : union(integers, doubles);

requi red: Set<Number>
found: Set<INT#1>
where INT#I,INT#2 are intersection types:

INT#I extends Number,Comparable<? extends INT#2>
INT#2 extends Number,Comparabie<?>

Luckily there is a way to deal with this sort of eror. If the compiler doesn't

infer the correct type, you can always tell it what type to use with an explicit type

I



r -1
I

r

i

I

I

i

I

ITEM 31: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY I45

private helper method to capture the wildcard type. The helper method must be a
generic method in order to capture the type. Here's how it looks:

public static void swap(List<?> list, int i, int j) {
swapHel per(l i st, i , j) ;

1
J

// Private helper method for wildcard capture
private static <E> void swapHelper(List<E> list, int i, int j) {

list.set(i, list.set(j, list.get(i))) ;
1
J

The swapHelper method knows that list is a List<E>. Therefore, it knows
that any value it gets out ofthis list is oftype E and that it's safe to put any value of
type E into the list. This slightly convoluted implementation of swap compiles
cleanly. It allows us to export the nice wildcard-based declaration, while taking
advantage of the more complex generic method internally. clients of the swap

method don't have to confront the more complex swapHelper declaration, but
they do benefit from it. It is worth noting that the helper method has precisely the
signature that we dismissed as too complex for the public method.

In summary, using wildcard types in your APIs, while tricky, makes the APIs
far more flexible. If you write a library that will be widely used, the proper use of
wildcard types should be considered mandatory. Remember the basic rule:
producer-extends, consumer-super (PECS). Also remember that all comparables
and comparators are consumers.

I

I

-T
I44 CHAPTER5 GENERICS

ScheduledFuture instances; it is comparable to any Delayed instance, and that's

enough to cause the original declaration to reject it. More generally, the wildcard

is required to support types that do not implement Comparable (or Comparator)

directly but extend a type that does'

There is one mofe wildcard-related topic that bears discussing. There is a

duality between type parameters and wildcards, and many methods can be

declared using one or the other. For example, here are two possible declarations

for a static method to swap two indexed items in a list. The first uses an

unbounded type parameter (Item 30) and the second an unbounded wildcard:

// Two possible declarations for the swap nrethod

public itatic <E> void swap(List<E> l'ist, 'int i, int j);
public static vo'id swap(List<?> list, int i , int j);

Which of these two declarations is preferable, and why? In a public API, the

second is better because it's simpler. You pass in a list-any list-and the method

swaps the indexed elements. There is no type parametef to worry about. As a rule,

if a type parameter appears only once in a method declaration, replace it with

a wildcard. If it's an unbounded type parameter, replace it with an unbounded

wildcard; if it's a bounded type parameter, replace it with a bounded wildcard'

There's one problem with the second declaration for swap. The straightfor-

ward implementation won't comPile:

pubf ic static vo'id swap(List<?> list, int i, int j) {
list.set(i, list'set(j, f ist.get(i))) ;

]

Trying to compile it produces this less-than-helpful effor message:

Swap.java:5: error: incompatible types: Object cannot be

converted to CAP#]-
list.set(i, list'set(j, list.get(i))) ;

^
where CAP#1 is a fresh type-variable:

CAP#1 extends Object from capture of ?

It doesn't seem right that we can't put an element back into the list that we just

took it out of. The problem is that the type of I i st is Li st<?>, and you can't put

any value except nul I into a Li st<?>. Fortunately, there is a way to implement

this method without resorting to an unsafe cast or a raw type. The idea is to write a



r -t

I
I

L

]TEM 3 ]: USE BOUNDED WILDCARDS TO INCREASE API FLEXIBILITY 145

private helper method to capture the wildcard type. The helper method must be a
generic method in order to capture the type. Here's how it looks:

public static void swap(List<?> list, int i, int j) {
swapHelper(list, -i, j);

1
J

// Private helper method for wildcard capture
private static <E> void swapHelper(L-ist<E> 1ist, int i, int j) {

list.set(i, list.set(j,'list.get(i)));
1
J

The swapHeiper method knows that list is a List<E>. Therefore, it knows
that any value it gets out ofthis list is oftype E and that it's safe to put any value of
type E into the list. This slightly convoluted implementation of swap compiles
cleanly. It allows us to export the nice wildcard-based declaration, while taking
advantage of the more complex generic method internally. clients of the swap

method don't have to confront the morc complex swapHelper declaration, but
they do benefit from it. It is worth noting that the helper method has precisely the
signature that we dismissed as too complex for the public method.

In summary, using wildcard types in your APIs, while tricky, makes the APIs
far more flexible. If you write a library that will be widely used, the proper use of
wildcard types should be considered mandatory. Remember the basic rule:
producer-extends, consumer-super (PECS). Also remember that all comparables
and comparators are consumers.

-T
I44 CHAPTER 5 GENERICS

Schedul edFutu re instances; it is comparable to any Del ayed instance, and that's

enough to cause the original declaration to feject it. More generally, the wildcard

is required to support types that do not implement Comparable (or Comparator)

directly but extend a type that does.

There is one more wildcard-related topic that bears discussing. There is a

duality between type parameters and wildcards, and many methods can be

declared using one or the other. For example, here are two possible declarations

for a static method to swap two indexed items in a list. The first uses an

unbounded type parameter (Item 30) and the second an unbounded wildcard:

// Two possible declarations for the swap method

pubf ic static <E> void swap(List<E> l'ist, int i, int j);
public static void swap(List<?> list, int i, int j);

which of these two declarations is preferable, and why? In a public API, the

second is better because it's simpler, You pass in a list-any list-and the method

swaps the indexed elements. There is no type parameter to worry about' As a rule,

if a type parameter appears only once in a method declaration, replace it with

a wildcard. If it's an unbounded type parameter, replace it with an unbounded

wildcard; if it's a bounded type parameter, replace it with a bounded wildcard'

There's one problem with the second declaration for swap. The straightfor-

ward implementation won't compile:

public static void swap(List<?> fist, int i, int j) {
list.set(i, list'set(j, list'get(i))) ;

]

Trying to compile it produces this less-than-helpful error message:

Swap.java:5: error: incompat'ib1e types: Object cannot be

converted to CAP#1
list.set(i, list.set(j, list'get(i))) ;

^
where CAP#I- is a fresh type-variable:

CAP#I extends Object from capture of ?

It doesn't seem right that we can't put an element back into the list that we just

took it out of. The problem is that the type of 'li st is Li st<?>, and you can't put

any value except null into a List<?>. Fortunately, thele is a way to implement

this method without resorting to an unsafe cast or a raw type. The idea is to write a


