
CHAPTER 3
Methods Common to Alt Objects

ArrtouoH object is a concrete class, it is designed primarily for extension.
All ofits nonfinal methods (equa1s, hashcode, tostring, c1one, and finalize)
have explicit general contracts because they are designed to be overridden. It is
the responsibility of any class overriding these methods to obey their general con-
tracts; failure to do so will prevent other classes that depend on the contracts (such
as HashMap and HashSet) from functioning properly in conjunction with the class.

This chapter tells you when and how to override the nonfinal0bject methods.
The fi nal i ze method is omitted from this chapter because it was discussed in
Item 8. While not an Object method, comparabl e. compareTo is discussed in this
chapter because it has a similar character.

rtem 10: obey the general contract when overriding equal s

oveniding the equals method seems simple, but there are many ways to get it
wrong, and consequences can be dire. The easiest way to avoid problems is not to
override the equal s method, in which case each instance of the class is equal only
to itself. This is the right thing to do if any of the following conditions apply:

' Each instance of the class is inherently unique. This is true for classes such
as Th read that represent active entities rather than values. The equal s imple-
mentation provided by Object has exactly the right behavior for these classes.

' There is no need for the class to provide a ,.logical equality, test. For
example, j ava. uti 1 . regex. patte rn could have overridden equa'l s to check
whether two Pattern instances represented exactly the same regular
expression, but the designers didn't think that clients would need or want this
functionality. under these circumstances, the equal s implementation
inherited from Object is ideal.

37

36 CHAPTER2 CREATINGANDDESTROYINGOB]ECTS

method. If exceptions are thrown by both the readLi ne call and the (invisible)

c1ose, the latter exception is suppressed in favor of the former. In fact, multiple

exceptions may be suppressed in order to preserve the exception that you actually

want to see. These suppressed exceptions are not merely discarded; they are

printed in the stack trace with a notation saying that they were suppressed. You

can also access them programmatically with the getsuppressed method, which

was added to Throwabl e inJavaT .

You can put catch clauses on try-with-resources statements, just as you can

on regular t ry-fi na'l 'ly statements. This allows you to handle exceptions without

sullying your code with another layer of nesting. As a slightly contrived example,

here's a version our fi rstLi neOfFi I e method that does not throw exceptions, but

takes a default value to return ifit can't open the file or read from it:

// try-with-resources with a catch c'lause
sîatiL String fi rstlineOfFile(String path, String defaultval) {

try (BufferedReader br : new BufferedReader(
new F'ileReader(Path))) {

return br. readLi neO ;

] catch (IOException e) {
return defaultVal;

]
i
The lesson is clear: Always use try-with-resources in preference to try-

fi na1
'ly when working with resources that must be closed. The resulting code is

shorter and clearer, and the exceptions that it generates are more useful. The try-
with-resources statement makes it easy to write correct code using resources that

must be closed, which was practically impossible using t ry-f i na'l 1y'

ITEM l0: OBEY THE GENERAL CONTMCT WHEN OVERRTDING EIIIALS 39

unless you are mathematically inclined, this might look a bit scary, but do not
ignore it! If you violate it, you may well find that your program behaves
erratically or crashes, and it can be very difficult to pin down the source of the
failure. To paraphrase John Donne, no class is an island. Instances ofone class are
frequently passed to another. Many classes, including all collections classes,
depend on the objects passed to them obeying the equal s contract.

Now that you are aware of the dangers of violating the equal s contract, let,s
go over the contract in detail. The good news is that, appearances notwithstanding,
it really isn't very complicated. Once you understand it, it's not hard to adhere to it.

So what is an equivalence relation? Loosely speaking, it's an operator that
partitions a set of elements into subsets whose elements are deemed equal to one
another. These subsets are known as equivalence classes. For an equals method
to be useful, all of the elements in each equivalence class must be interchangeable
from the perspective of the user. Now let's examine the five requirements in turn:

Reflexivity-The first requirement says merely that an object must be equal
to itself. It's hard to imagine violating this one unintentionally. If you were to vio-
late it and then add an instance of your class to a collection, the contai ns method
might well say that the collection didn't contain the instance that you just added.

symmetry-The second requirement says that any two objects must agree on
whether they are equal. Unlike the first requirement, it's not hard to imagine vio-
lating this one unintentionally. For example, consider the following class, which
implements a case-insensitive string. The case of the string is preserved by
tostri ng but ignored in equa'ls comparisons:

// Broken - violates symmetry!
pubf ic final class CasefnsensitiveString {private final String s;

pub'l'ic Casef nsensi tiveStri ng(Str.i ng s) {
this.s = Objects. requi reNonNull (s) ;

]
// Broken - vio'lates symmetry!
@Override public boolean equals(Object o) {if (o instanceof CaselnsensitiveString)

'""i?.1;iii3ïliiï:3iiif,, o) s);
if (o instanceof String) // One-way interoperabilityl

return s.equalslgnoreCase((String) o) ;
return false;

]
// Remainder omitted

]

38 CHAPTER3 METHODSCOMMONTOALLOBJECTS

. A superclass has already overridden equa-l s, and the superclass behavior

is appropriate for this class. For example, most Set implementations inherit

theii equa'l s implementation from AbstractSet, Li st implementations from

AbstractLi st, and Map implementations from AbstractMap'

. The class is private or package-private, and you are certain that its equal s

method will never be invoked. If you are extremely risk-averse, you can over-

ride the equa'l s method to ensure that it isn't invoked accidentally:

@Override public boolean equals(Object o) {
thrownewAssertionError();//l{rethodisneverca]]ed

]
So when is it appropriate to override equal s? It is when a class has a notion of

logical equality that differs from mere object identity and a superclass has not

already overridden equa'l s. This is generally the case fot value classes' A value

class is simply a class that represents a value, such as Integer or String.A
programmer who compares references to value objects using the equal s method

"*p""tr
to find out whether they are logically equivalent, not whether they refer to

the same object. Not only is overriding the equal s method necessary to satisfy

programmer expectations, it enables instances to serve as map keys or set

elements with predictable, desirable behavior.

One kind of value class that does not teqrtire the equal s method to be overrid-

den is a class that uses instance control (Item 1) to ensure that at most one object

exists with each value. Enum types (Item 34) fall into this category. For these

classes, logical equality is the same as object identity, so Ob j ect's equal s method

functions as a logical equal s method.

When you override the equal s method, you must adhere to its general con-

tract. Here is the contract, from the specification for Object :

The equal s method implements an equivalence relation.It has these properties:

. Reflexive: For any non-null reference value x, x . equal s (x) must return t rue.

. Symmetric: For any non-null reference values x and y, x. equal s (y) must re-

turn true if and only if y. equal s (x) returns true'

. Transitive: For any non-null reference values x, Y, z, if x. equal s (y) returns

true and y.equals(z) returns true, then x.equals(z) mustfeturn true.

. Consistenf: For any non-null reference values x and y, multiple invocations

of x . equal s (y) must consistently return t rue or consistently return f a1 se,

provided no information used in equal s comparisons is modified.

. For anY non-null reference value x, x. equal s (nul I) must retum fal se'

38 CHAPTER3 METHODS COMMONTO ALLOBJECTS

. A superclass has already overridden equals, and the superclass behavior

is appropriate for this class. For example, most Set implementations inherit

their equal s implementation from AbstractSet, Li st implementations from

AbstractLi st, and Map implementations from AbstractMap'

. The class is private or package-private, and you are certain that its equal s

method will never be invoked.If you are extremely risk-averse' you can over-

ride the equal s method to ensure that it isn't invoked accidentally:

@Override public boolean equals(Object o) {
throw new Asserti onErrorO ; / / l"lethod i s never cal I ed

]
So when is it appropriate to override equal s? It is when a class has a notion of

logical equality that differs from mere object identity and a superclass has not

already overridden equal s. This is generally the case for value classes. A value

class is simply a class that represents a value, such as Integer or String.A
pfogrammer who compares references to value objects using the equal s method

expects to find out whether they are logically equivalent, not whether they refer to

the same object. Not only is overriding the equa'ls method necessary to satisfy

programmer expectations, it enables instances to serve as map keys or set

elements with predictable, desirable behavior.

One kind of value class that does not require the equal s method to be overrid-

den is a class that uses instance control (Item 1) to ensure that at most one object

exists with each value. Enum types (Item 34) fall into this category. For these

classes, logical equality is the same as object identity, so Object's equal s method

functions as a logical equa'ls method.

When you override the equals method, you must adhere to its general con-

tract. Here is the contract, from the specification for Object :

The equal s method implements an equivalence relation.It has these properties:

. Reflexive: For any non-null reference value x, x. equal s (x) must return true'

. Symmetric: For any non-null reference values x and y, x. equal s (y) must re-

turn true if and only if y. equal s (x) returns true.

. Transitive: For any non-null reference values x, Y, Z, if x. equal s (y) returns

true and y.equals(z) returns true, then x.equals(z) mustreturn true.

, Consistenf: For any non-null reference values x and y, multiple invocations

of x . equa'l s (y) must consistently return t rue or consistently return fal se,

provided no information used in equa'l s comparisons is modified.

. For any non-null reference value x, x. equal s (nul 1) must return fal se.

ITEM 1O: OBEYTHE GENERALCONTRACTWHEN)VERRIDING EQUALS 39

unless you are mathematically inclined, this might look a bit scary, but do not
ignore it! If you violate it, you may well find that your program behaves
erratically or crashes, and it can be very difficult to pin down the source of the
failure. To paraphrase John Donne, no class is an island. Instances ofone class are
frequently passed to another. Many classes, including all collections classes,
depend on the objects passed to them obeying the equals contract.

Now that you are aware of the dangers of violating the equal s contract, let,s
go over the contract in detail. The good news is that, appearances notwithstanding,
it really isn't very complicated. Once you understand it, it's not hard to adhere to it.

So what is an equivalence relation? Loosely speaking, it's an operator that
partitions a set of elements into subsets whose elements are deemed equal to one
another. These subsets are known as equivalence classes. For an equals method
to be useful, all of the elements in each equivalence class must be interchangeable
from the perspective of the user. Now let's examine the five requirements in turn:

Reflexivity-The first requirement says merely that an object must be equal
to itself. It's hard to imagine violating this one unintentionally. If you were to vio-
late it and then add an instance of your class to a collection, the contai ns method
might well say that the collection didn't contain the instance that you just added.

symmetry-The second requirement says that any two objects must agree on
whether they are equal. Unlike the first requirement, it's not hard to imagine vio-
lating this one unintentionally. For example, consider the following class, which
implements a case-insensitive string. The case of the string is preserved by
toStri ng but ignored in equal s comparisons:

// Broken - violates symmetry!
public final class CaselnsensitiveString {private final String s;

public CasefnsensitiveString(String s) {this.s = Objects. requi reNonNull (s) ;

]
// Broken - violates symmetry!
@Override pub'lic boolean equals(0bject o) {if (o instanceof CaselnsensitiveString)

'""i?.1:ii3ïl?iï!3tii[, o) s);
if (o instanceof String) // One-way interoperability!

return s.equalslgnoreCase((String) o) ;
return fal se;

]
// Remainder omitted

]

ITEM]O: OBEY THE GENERAL C)NTRACT WHEN)VERRIDING EQUALS

information that affects equal s comparisons. Let's start with a simple immutable
two-dimensional integer point class:

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {this.x: x;
this.y: y;

]
@Override public boolean equals(Object o) {if (! (o instanceof point))

return false;
Point p = (point)o;
return p.x == x && p.y == yl

]

// Remainder omitted
]

suppose you want to extend this class, adding the notion of color to a point:

public class Colorpoint extends point {private final Color color;

pubfic ColorPoint(int x, int y, Color color)
super(x, y);
this.color = color;

]

// Remainder omitted

How should the equal s method look? If you leave it out entirely, the imple-
mentation is inherited from poi nt and color information is ignored in equal s
comparisons. While this does not violate the equal s contract, it is clearly unac-
ceptable. suppose you write an equal s method that returns true only if its argu-
ment is another color point with the same position and color:

// Broken - violates symmetry!
@Override pub'lic boolean equals(Object o)if (! (o instanceof Colorpoint))

return false;
return super.equals(o) && ((Colorpoint) o).color == color;

47

{

]

{

]

40 CHAPTER3 METHODSCOMMONTOALLOBJECTS

The well-intentioned equal s method in this class naively attempts to interop-

erate with ordinary strings. Let's suppose that we have one case-insensitive string

and one ordinary one:

Caselnsensi ti veStri ng ci s = new Caselnsensi tiveStri ng("Po1 i sh") ;

Stri ng 5 = "Po'l i sh" ;

As expected, cis.equals(s) returns true. The problem is that while the

equals method in caselnsensitivestring knows about ordinary strings, the

equals method in string is oblivious to case-insensitive strings. Therefore,

s . equal s (ci s) returns fal se, a clear violation of symmetry. Suppose you put a

case-insensitive string into a collection:

List<CaselnsensitiveString> f ist = new Arraylist<>O;
I i st. add(ci s) ;

What does list.contains(s) return at this point? Who knows? In the

current OpenJDK implementation, it happens to return fal se, but that's just an

implementation artifact. In another implementation, it could just as easily return

true or throw a runtime exception. Once you've violated the equa'ls contract,

you simply don't know how other objects will behave when confronted with

your object.
To eliminate the problem, merely remove the ill-conceived attempt to interop-

erate with Stri ng from the equal s method. once you do this, you can refactor the

method into a single return statement:

@Override public boolean equals(Object o) {
return o instanceof CaselnsensitiveString 8'&

((Caselnsensi tiveStri ng) o) . s'equa'l slgnoreCase(s) ;

]

T[ansitivity-The third requirement of the equal s contract says that if one

object is equal to a second and the second object is equal to a third, then the first

obJect must be equal to the third. Again, it's not hard to imagine violating this

requirement unintentionally. Consider the case of a subclass that adds anevr value

component to its superclass. In other words, the subclass adds a piece of

u'

ITEM]O: OBEY THE GENEML C)NTRACT WHEN }VERRIDING EQUALS

information that affects equal s comparisons. Let's start with a simple immutable
two-dimensional integer point class:

public class Point {
private final int x;
private final int y;

public Point(int x, int y) {
this.x = x;
this.y = y;

]

@Override pubiic boolean equals(Object o) {if (! (o instanceof point))
return false;

Po'int p = (point)o;
return p.x == x E& p .y == yl

]

// Remainder omitted
]

suppose you want to extend this class, adding the notion of color to a point:

public class Colorpoint extends point {private final Color color;

public ColorPoint(int x, int y, Color color)
super(x, y);
this.color = color;

]

// Remainder omitted
]

How should the equal s method look? If you leave it out entirely, the imple-
mentation is inherited from poi nt and color information is ignored in equal s
comparisons' While this does not violate the equal s contract, it is clearly unac-
ceptable. Suppose you write an equals rnethod that returns true only if its argu-
ment is another color point with the same position and color:

// Broken - violates symmetry!
@Override public boolean equals(Object o) {if (! (o instanceof Colorpoint))

return false;
return super.equals(o) && ((Colorpoint) o).color == color;i

4t

{

40 CHAPTER3 METHODSCOMMONTOALLOBJECTS

The well-intentironed equal s method in this class naively attempts to interop-

erate with ordinary strings. Let's suppose that we have one case-insensitive string

and one ordinary one:

Caselnsensi tiveStri ng ci s = new Caselnsensi ti veStri ng("Pol i sh") ;

Stri ng s = "Po1 i sh" ;

As expected, cis.equals(s) returns true. The problem is that while the

equals method in CaselnsensitiveString knows about ordinary strings, the

equals method in String is oblivious to case-insensitive strings. Therefore,

s . equal s (ci s) returns fal se, a clear violation of symmetry. suppose you put a

case-insensitive string into a collection:

List<CaselnsensitiveString> f ist : new ArrayList<>O;
I i st. add(ci s) ;

What does list.contains(s) return at this point? Who knows? In the

current openJDK implementation, it happens to return fa1se, but that's just an

implementation artifact. In another implementation, it could just as easily return

true or throw a runtime exception. Once you've violated the equals contractt

you simply don't know how other objects will behave when confronted with

your object.
To eliminate the problem, merely remove the ill-conceived attempt to interop-

erate with Stri ng from the equal s method. Once you do this, you can refactor the

method into a single return statement:

@Override public boolean equals(Object o) {
return o instanceof CaselnsensitiveString &&

((Caselnsensi tiveStri ng) o) . s ' equal slgnoreCase(s) ;

]

Tfansitivity-The third requirement of the equa'ls contract says that if one

object is equal to a second and the second object is equal to a third, then the first

object must be equal to the third. Again, it's not hard to imagine violating this

requirement unintentionally. Consider the case of a subclass that adds anew value

component to its superclass. In other words, the subclass adds a piece of

ITEM 1O: OBEY THE GENEML CONTRACT WHEN OVERRIDING EQUALS 43

You may hear it said that you can extend an instantiable class and add a value
component while preserving the equals contract by using a getclass test in
place of the i nstanceof test in the equal s method:

// Broken - violates Liskov substitution principle (page 43)
@Override public boolean equals(Object o) {if (o == hull || o.getCïassO l= getClassO)

return fal se;
Pointp=(point)o;
return p.x == x && p.y == yi

]

This has the effect of equating objects only if they have the same implementation
class. This may not seem so bad, but the consequences are unacceptable: An
instance of a subclass of Poi nt is still a Poi nt, and it still needs to function as one,
but it fails to do so if you take this approach! Let's suppose we want to write a
method to tell whether a point is on the unit circle. Here is one way we could do it:

// Tnitiatize unitcircle to contain all points on the unit circ'leprivate static final Set<point> unitCircle = Set.of(
new Point(1, 0), new point(0, 1),
new Point(-l, 0), new point(0, -1));

public static boolean onunitcircle(point p) {
retu rn uni tCi rcl e . contai ns (p) ;

]

While this may not be the fastest way to implement the functionality, it works fine.
suppose you extend Poi nt in some trivial way that doesn't add a value component,
say, by having its constructor keep track of how many instances have been created:

public class CounterPoint extends point {private static final Atomiclnteger counter =
new AtomiclntegerO;

public CounterPoint(int x, int y) {
super(x, y);
counter. i ncrementAndGetO ;

]
pubfic static int numberCreatedO { return counter.SetO; }

The Liskov substitution principle says that any important property of a type
should also hold for all its subtypes so that any method written for the type should
work equally well on its subtypes [Liskov87]. This is the formal statement of our

]

42 CHAPTER 3 METHODS COMMONTO ALLOB'IECTS

The problem with this method is that you might get different results when com-

paring a point to a color point and vice versa. The former comparison ignores color,

while the latter comparison always returns fal se because the type of the argument

is incorrect. To make this concrete, let's create one point and one color point:

Point P = new Point(]-, 2);
ColorPoint cp = hêw ColorPoint(1' 2' Color'RED);

Then p.equals(cp) returns true, while cp'equals(p) returns false' You

mighttrytofixtheproblembyhavingColorPoint'equalsignorecolorwhen
doing "mixed comParisons":

// Broken - violates transitivity!
'Oôu".tide public boolean equals(Object o) {

if (! (o instanceof Point))
return false;

// If o is a normal Point, do a color-blind comparison

if (!(o instanceof ColorPoint))
return o.equal s(this) ;

// o is a ColorPoint; do a fu11 comparison
return trpàt.àq,ats(o) && ((ColorPoint) o) 'color == color;

i
This approach does provide symmetry, but at the expense of transitivity:

ColorPoint pl- = tl€w ColorPoint(l-, 2' Color'RED);
Point P2 = new Point(1, 2);
ColorPbint p3 = fl€w ColorPoint(1, 2' Color'BLUE);

Now p1.equa1s(p2) and p2'equals(p3) return true' while pt'equals(p3)

returns fal se, a clear violation of transitivity. The first two comparisons are

"color-blind," while the third takes color into account'

Also,thisapproachcancauseinfiniterecursion:Supposetherearetwo
subclasses of Point, say colorPoint and SmellPoint, each with this sort of

equal s method. Then a call to mycol orPoi nt . equa'l s (mysmel I Poi nt) will

throw a StackOve rfl owError'

so what's the solution? It turns out that this is a fundamental problem of

equivalence relations in object-oriented languages. There is no way to extend an

instantiable class and add a value component while preserving the equal s

contract, unless you're willing to forgo the benefits of object-oriented abstraction'

ITEM 10: OBEYTHEGENERALCONTMCTWHEN OVERRTDING EjUALS 43

You may hear it said that you can extend an instantiable class and add a value
component while preserving the equals contract by using a getclass test in
place of the i nstanceof test in the equal s method:

// Broken - violates Liskov substitution principle (page 43)
@Override public boolean equals(Object o) {if (o == hull | | o.getCïassO J= getClassO)

return false;
Pointp=(point)o;
return p.x == x && p.y == yi

]

This has the effect of equating objects only if they have the same implementation
class. This may not seem so bad, but the consequences are unacceptable: An
instance of a subclass of poi nt is still a Poi nt, and it still needs to function as one,
but it fails to do so if you take this approach! Let's suppose we want to write a
method to tell whether a point is on the unit circle. Here is one way we could do it:

// rnitialize unitcircle to contain all points on the unit circleprivate static final Set<point> unitCi rcle = Set.of(
new Point(1, 0), new point(0, 1),
new Point(-l, 0), new point(0, -1));

publ i c stati c bool ean onUni tCi rcl e(poi nt p) {
retu rn uni tCi rcl e . contai ns (p) ;

]

While this may not be the fastest way to implement the functionality, it works fine.
suppose you extend Poi nt in some trivial way that doesn't add a value component,
say, by having its constructor keep track of how many instances have been created:

public class CounterPoint extends point {private static final Atomiclnteger counter =
new AtomiclntegerO;

public CounterPoint(int x, int y) {
super(x, y) ;

counter. i ncrementAndGetO ;

]
public static int numberCreatedO { return counter.setO; }

The Liskov substitution principle says that any important property of a type
should also hold for all its subtypes so that any method written for the type should
work equally well on its subtypes [Liskov87]. This is the formal statement of our

]

r-
42 CHAPTER3 METHODSCOMMONTOALLOBJECTS

The problem with this method is that you might get different results when com-

paring a point to a color point and vice versa. The former comparison ignores color,

while the latter comparison always returns fal se because the type of the argument

is incorrect. To make this concrete, let's create one point and one color point:

Point P = new Point(l-, 2);
ColorPoint cp = nêw ColorPoint(l-, 2, Color'RED);

Thenp.equals(cp)returnstrue'whilecp.equa.ls(p)returnsfalse.You
might try to fix the problem by having colorPoint'equals ignore color when

doing "mixed comParisons" :

// Broken - violates transitivity!-Obverride
public boolean equals(Object o) {

if (l (o instanceof Point))
return false;

// ff o is a normal Point, do a color-blind comparison
if (!(o instanceof ColorPoint))

return o.equal s(this) ;

// o is a ColorPoint; do a fu11 comparison
return super'equals(o) && ((ColorPoint) o) 'color == color;

]

This approach does provide symmetry, but at the expense of transitivity:

ColorPoint pl = new ColorPoint(l-, 2, Color'RED);
Point p2 = flêw Point(1, 2);
ColorPoint p3 = new ColorPoint(L, 2, Color'BLUE);

Now p1.equa1s(p2) and p2.equa1s(p3) return true, while p1.equa1s(p3)

returns fal se, a clear violation of transitivity. The first two comparisons are

"color-blind," while the third takes color into account'

Also, this approach can cause infinite recursion: Suppose there are two

subclasses of Point, say colorPoint and smellPoint, each with this sort of

equals method. Then a call to mycolorPo'int.equals(mysmellPoint) will

throw a Stack0verfl owError.

So what's the solution? It turns out that this is a fundamental problem of

equivalence relations in object-oriented languages. There is no way to extend an

instantiable class and add a value component while preserving the equal s

contract, unless you're willing to forgo the benefits of object-oriented abstraction'

ITEM 10: OBEY THE GENEML CONTRACT WHEN OVERRIDING EQUALS 45

extends java.util .Date and adds a nanoseconds field. The equals implementa-
tion for Timestamp does violate symmetry and can cause erratic behavior if
Ti mestamp and Date objects are used in the same collection or are otherwise inter-
mixed. The Timestamp class has a disclaimer cautioning programmers against
mixing dates and timestamps. While you won't get into trouble as long as you
keep them separate, there's nothing to prevent you from mixing them, and the
resulting en:ors can be hard to debug. This behavior of the Ti mestamp class was a
mistake and should not be emulated.

Note that you can add a value component to a subclass of an abstract class
without violating the equal s contract. This is important for the sort of class hier-
archies that you get by following the advice in ltem 23,"Prefer class hierarchies to
tagged classes." For example, you could have an abstract class Shape with no
value components, a subclass circle that adds a radius field, and a subclass
Rectangl e that adds l ength and wi dth fields. Problems of the sort shown earlier
won't occur so long as it is impossible to create a superclass instance directly.

Consistency-The fourth requirement of the equal s contract says that if two
objects are equal, they must remain equal for all time unless one (or both) of them
is modified. In other words, mutable objects can be equal to different objects at
different times while immutable objects can't. when you write a class, think hard
about whether it should be immutable (Item I7). rf you conclude that it should,
make sure that your equal s method enforces the restriction that equal objects
remain equal and unequal objects remain unequal for all time.

Whether or not a class is immutable, do not write an equal s method that
depends on unreliable resources. It's extremely difficult to satisfy the consis-
tency requirement if you violate this prohibition. For example, java.net.URL's
equal s method relies on comparison of the IP addresses of the hosts associated
with the uRLs. Translating a host name to an IP address can require network
access, and it isn't guaranteed to yield the same results over time. This can cause

the URL equal s method to violate the equal s contract and has caused problems in
practice. The behavior of URL's equal s method was a big mistake and should not
be emulated. Unfortunately, it cannot be changed due to compatibility require-
ments. To avoid this sort of problem, equal s methods should perform only deter-
ministic computations on memory-resident objects.

Non-nullity-The final requirement lacks an official name, so I have taken
the liberty of calling it "non-nullity." It says that all objects must be unequal to
null. While it is hard to imagine accidentally returning true in response to the
invocation o.equals(null), it isn't hard to imagine accidentally throwing a

44 CHAPTER3 METHODSCOMMONTOALLOBJECTS

earlier claim that a subclass of Poi nt (such as counterPoi nt) is still a Poi nt and

must act as one. But suppose we pass a CounterPoint to the onUnitCircle

method. If the Poi nt class uses a getcl ass-based equa'ls method, the

onuni tci rcl e method will retutn fal se regardless of the counterPoi nt

instance's x andy coordinates. This is so because most collections, including the

HashSet used by the onunitcircle method, use the equals method to test for

containment, and no CounterPoint instance is equal to any Point. If, however,

you use a proper instanceof-based equa'l s method on Point, the same

onuni tci rcl e method works fine when presented with a counterPoi nt instance'

While there is no satisfactory way to extend an instantiable class and add a

value component, there is a fine workaround: Follow the advice of Item 18,

"Favor composition over inheritance'" Instead of having ColorPoint extend

Po.i nt, give Col orPoi nt a private Poi nt field and a public view method (Item 6)

that returns the point at the same position as this color point:

//^ddsava]uecomponentwithoutviolatingtheequalscontract
pub'li c cl ass Col orPoi nt {

private final Point Point;
private final Color color;

public ColorPoint(int x' int y, Color color) {
po'int = hêw Point(x, Y);
this.color = 0bjects. requ'i reNonNull (color) ;

]

/ t,s,

* Returns the point-view of this color point'
tr/

public Point asPointO {
return Poi nt;

]

@Override public boolean equals(Object o) {
if (l(o instanceof ColorPoint))

return fal se;
ColorPoint cP = (ColorPoint) o;
retu rn .p. poi nt. equal s (poi nt) && cp ' col or ' equal s (col or) ;

]

// Renalnder omitted
]

There are some classes in the Java platform libraries that do extend an instan-

tiable class and add a value component. For example, java.sql 'Timestamp

ITEM IO: OBEYTHEGENERALCONTRACTWHEN OVERRIDING EQUALS 45

extends java. utjl . Date and adds a nanoseconds field. The equal s implementa-
tion for Timestamp does violate symmetry and can cause erratic behavior if
Ti mestamp and Date objects are used in the same collection or are otherwise inter-
mixed. The Ti mestamp class has a disclaimer cautioning programmers against
mixing dates and timestamps. While you won't get into trouble as long as you
keep them separate, there's nothing to prevent you from mixing them, and the
resulting effors can be hard to debug. This behavior of the Ti mestamp class was a
mistake and should not be emulated.

Note that you can add a value component to a subclass of an abstract class
without violating the equal s contract. This is important for the sort of class hier-
archies that you get by following the advice in Item 23,"Prefer class hierarchies to
tagged classes." For example, you could have an abstract class Shape with no
value components, a subclass ci rcl e that adds a radi us field, and a subclass
Rectangl e that adds l ength and wi dth fields. Problems of the sort shown earlier
won't occur so long as it is impossible to create a superclass instance directly.

Consistency-The fourth requirement of the equa'ls contract says that if two
objects are equal, they must remain equal for all time unless one (or both) of them
is modified. In other words, mutable objects can be equal to different objects at
different times while immutable objects can't. When you write a class, think hard
about whether it should be immutable (Item l7). rf you conclude that it should,
make sure that your equal s method enforces the restriction that equal objects
remain equal and unequal objects remain unequal for all time.

Whether or not a class is immutable, do not write an equal s method that
depends on unreliable resources. It's extremely difficult to satisfy the consis-
tency requirement if you violate this prohibition. For example, java.net.URL's
equa'ls method relies on comparison of the IP addresses of the hosts associated
with the uRLs. Translating a host name to an IP address can require network
access, and it isn't guaranteed to yield the same results over time. This can cause

the URL equal s method to violate the equal s contract and has caused problems in
practice. The behavior of URL's equal s method was a big mistake and should not
be emulated. unfortunately, it cannot be changed due to compatibility require-
ments. To avoid this sort of problem, equal s methods should perform only deter-
ministic computations on memory-resident objects.

Non-nullity-The final requirement lacks an official name, so I have taken
the liberty of calling it "non-nullity." It says that all objects must be unequal to
null. While it is hard to imagine accidentally returning true in response to the
invocation o.equals(null), it isn't hard to imagine accidentally throwing a

44 CHAPTER3 METHODSCOMMONTOALLOBJECTS

earlier claim that a subclass of Poi nt (such as CounterPoi nt) is still a Poi nt and

must act as one. But suppose we pass a CounterPoint to the onUnitCircle

method. If the Poi nt class uses a getcl ass-based equal s method, the

onuni tci rcl e method will return fal se regardless of the counterPoi nt

instance's x andy coordinates. This is so because most collections, including the

HashSet used by the onunitcircle method, use the equals method to test for

containment, and no CounterPoint instance is equal to any Point. If, howeveq

you use a proper i nstanceof-based equal s method on Poi nt, the same

onUni tCi rcl e method works fine when presented with a CounterPoi nt instance'

While there is no satisfactory way to extend an instantiable class and add a

value component, there is a fine workaround: Follow the advice of Item 18,

"Favor composition over inheritance." Instead of having ColorPoint extend

Point, give ColorPoint a private Point field and a public view method (Item 6)

that returns the point at the same position as this color point:

// Adds a value component without violating the equals contract
public class ColorPoint {

private final Point Point;
private final Color color;

public ColorPoint(int x, int y, Color color) {
po'int = h€w Point(x, Y);
this.color = Objects. requi reNonNu'll (color) ;

l
J

,r Returns the point-view of this color point'

public Point asPointO {
retu rn po'i nt ;

]

@Override public boolean equals(Object o) {
if (l (o instanceof ColorPoint))

return false;
ColorPoint cp = (ColorPoint) o;
return .p.point.equals(point) && cp'color'equals(color) ;

]

// Renainder omitted
]

There are some classes in the Java platform libraries that do extend an instan-

tiable class and add a value component. For example, java.sql.Timestamp

ITEM 1O: OBEYTHE GENEMLCONTMCTWHEN OVERRIDING EQUALS 47

4. For each 66signifïcant" field in the class, check if that field of the argument
matches the corresponding fTeld of this object. If all these tests succeed, re-
turn true; otherwise, return false. If the type in Step 2 is an interface, you
must access the argument's fields via interface methods; if the type is a class,
you may be able to access the fields directly, depending on their accessibility.

For primitive fields whose type is not fl oat or doubl e, use the == operator for
comparisons; for object reference fields, call the equal s method recursively;
for float fields, use the static Float.compare(f1oat, float) method; and
for double fields, use Double.compare(double, double). The special treat-
ment of float and double fields is made necessary by the existence of
Float.NaN, -0.0f and the analogous double values; see JLS 15.2l.l or the
documentation of Fl oat . equal s for details. while you could compare fr oat
and doubl e fields with the static methods Fl oat. equal s and Doubl e. equa'ls,
this would entail autoboxing on every comparison, which would have poor
performance. For array fields, apply these guidelines to each element. If every
element in an affay field is significant, use one of the Ar rays . equal s methods.

Some object reference fields may legitimately contain null. To avoid the
possibility of a Nul I Poi nterExcepti on, check such fields for equality using
the static method 0b j ects . equal s (0b j ect , 0b j ect).

For some classes, such as CaselnsensitiveStri ng above, field comparisons
are more complex than simple equality tests. If this is the case, you may want
to store a canonical form of the field so the equal s method can do a cheap ex-
act comparison on canonical forms rather than a more costly nonstandard com-
parison. This technique is most appropriate for immutable classes (Item 17); if
the object can change, you must keep the canonical form up to date.

The performance of the equal s method may be affected by the order in which
fields are compared. For best performance, you should first compare fields that
are more likely to differ,less expensive to compare, or, ideally, both. You must
not compare fields that are not part of an object's logical state, such as lock
fields used to synchronize operations. You need not compare derived fields,
which can be calculated from "significant fields," but doing so may improve
the performance of the equal s method. If a derived field amounts to a summa-

ry description of the entire object, comparing this field will save you the ex-
pense of comparing the actual data if the comparison fails. For example,
suppose you have a Polygon class, and you cache the area. If two polygons
have unequal areas, you needn't bother comparing their edges and vertices.

46 CHAPTER 3 METHODS COMMON TO ALLOB,IECTS

Null poi nterException. The general contract prohibits this. Many classes have

equal s methods that guard against it with an explicit test for nul l:

@Override public boolean equa'ls(Object o) {
if (o == null)

return false;

]
This test is unnecessary. To test its argument for equality, the equal s method must

first cast its argument to an appropriate type so its accessors can be invoked or its

fields accessed. Before doing the cast, the method must use the i nstanceof oper-

ator to check that its argument is of the corect type:

@Override public boolean equals(0bject o) {
if (! (o instanceof MYTYPe))

return false;
MyType p1 = (MyType) o;

]
If this type check were missing and the equal s method were passed an argument

of the wrong type, the equals method would throw a ClassCastException,

which violates the equal s contract. But the i nstanceof operator is specified to

return false if its first operand is null, regardless of what type appears in the

second operand ULS, 15.20.21. Therefore, the type check will return false if
nul I is passed in, so you don't need an explicit nul I check.

Putting it all together, here's a recipe for a high-quality equa'ls method:

1. Use the == operator to check if the argument is a reference to this object.

If so, return true. This is just a performance optimization but one that is worth

doing if the comparison is potentially expensive.

2. Use the i nstanceof operator to check if the argument has the correct type.

If not, return fal se. Typically, the correct type is the class in which the method

occurs. Occasionally, it is some interface implemented by this class. Use an

interface if the class implements an interface that refines the equal s contract

to permit comparisons across classes that implement the interface. Collection

interfaces such as Set, Li st, Map, and Map. Entry have this property'

3. Cast the argument to the correct type. Because this cast was preceded by an

i nstanceof test, it is guaranteed to succeed.

46 CHAPTER3 METHODSCOMMONTOALLOBJECTS

NullpointerException. The general contract prohibits this. Many classes have

equal s methods that guard against it with an explicit test for nul l:

@Override public boolean equals(0bject o) {
if (o == null)

return fal se;

]
This test is unnecessary. To test its argument for equality, the equal s method must

first cast its argument to an appropriate type so its accessors can be invoked or its

fields accessed. Before doing the cast, the method must use the i nstanceof oper-

ator to check that its argument is of the correct type:

@Override public boolean equals(Object o) {
if (! (o instanceof MyTYPe))

return fal se;
MyType p1 = (MyType) o;

]
If this type check were missing and the equal s method were passed an argument

of the wrong type, the equals method would throw a ClassCastException,

which violates the equal s contract. But the i nstanceof operator is specified to

return fal se if its first operand is nul l, regardless of what type appears in the

second operand ULS, 15.20.21. Therefore, the type check will return false if
null is passed in, so you don't need an explicit null check.

Putting it all together, here's a recipe for a high-quality equal s method:

1. Use the == operator to check if the argument is a reference to this object.

If so, return t rue. This is just a performance optimization but one that is worth

doing if the comparison is potentially expensive'

2. Use the i nstanceof operator to check if the argument has the correct type.

If not, return fal se. Typically, the correct type is the class in which the method

occurs. Occasionally, it is some interface implemented by this class. Use an

interface if the class implements an interface that refines the equal s contract

to permit comparisons across classes that implement the interface. Collection

interfaces such as Set, Li st, Map, and Map. Entry have this property.

3. Cast the argument to the correct type. Because this cast was preceded by an

i nstanceof test, it is guaranteed to succeed.

ITEM 1O: OBEYTHE GENERALCONTRACTWHEN OVERRIDING EQUAIS 47

4. For each "significant" fïeld in the class, check if that fÏeld of the argument
matches the corresponding field of this object. If all these tests succeed, re-
turn true; otherwise, return false. If the type in Step 2 is an interface, you
must access the argument's fields via interface methods; if the type is a class,
you may be able to access the fields directly, depending on their accessibility.

For primitive fields whose type is not fl oat or doubl e, use the == operator for
comparisons; for object reference fields, call the equal s method recursively;
for float fields, use the static Float.compare(f1oat, float) method; and
for doubl e fields, use Doubl e . compare (doubl e , doubl e). The special treat-
ment of float and double fields is made necessary by the existence of
Float.NaN, -0.0f and the analogous double values; see JLS 15.2l.1or the
documentation of Fl oat. equal s for details. while you could compare fr oat
and doubl e fields with the static methods Fl oat. equal s and Doubl e. equal s,
this would entail autoboxing on every comparison, which would have poor
performance. For array fields, apply these guidelines to each element. If every
element in an arruy field is significant, use one of the Ar rays . equal s methods.

Some object reference fields may legitimately contain nul 1 To avoid the
possibility of a Nul I Poi nterException, check such fields for equality using
the static method 0b j ects . equal s (0b j ect , Ob j ect).

For some classes, such as CaselnsensitiveString above, field comparisons
are more complex than simple equality tests. If this is the case, you may want
to store a canonical form of The field so the equal s method can do a cheap ex-
act comparison on canonical forms rather than a more costly nonstandard com-
parison. This technique is most appropriate for immutable classes (Item 17); if
the object can change, you must keep the canonical form up to date.

The performance of the equal s method may be affected by the order in which
fields are compared. For best performance, you should first compare fields that
are more likely to differ, less expensive to compare, or, ideally, both. You must
not compare fields that are not part of an object's logical state, such as lock
fields used to synchronize operations. You need not compare derived fields,
which can be calculated from "significant fields," but doing so may improve
the performance of the equal s method. If a derived field amounts to a summa-
ry description of the entire object, comparing this field will save you the ex-
pense of comparing the actual data if the comparison fails. For example,
suppose you have a Polygon class, and you cache the area. If two polygons
have unequal areas, you needn't bother comparing their edges and vertices.

ITEM]O: OBEYTHE GENERALCONTMCTWHEN OVERRIDING EQUALS 49

. Don't substitute another type for Obj ect in the equal s declaration. It is not
uncommon for a programmer to write an equal s method that looks like this
and then spend hours puzzling over why it doesn't work properly:

// Broken - parameter type nust be Object!
public boolean equals(MyClass o) {

]
The problem is that this method does not override Object.equals, whose
argument is of type Object, but overloads it instead (Item52). It is
unacceptable to provide such a "strongly typed" equal s method even in
addition to the normal one, because it can cause Override annotations in
subclasses to generate false positives and provide a false sense of security.

Consistent use of the Ove r ri de annotation, as illustrated throughout this item,
will prevent you from making this mistake (Item40). This equals method
won't compile, and the error message will tell you exactly what is wrong:

// Still broken, but won't compile
@Override public boolean equals(MyClass o) {

]
Writing and testing equal s (and hashCode) methods is tedious, and the result-

ing code is mundane. An excellent alternative to writing and testing these methods
manually is to use Google's open source AutoValue framework, which automati-
cally generates these methods for you, triggered by a single annotation on the
class . In most cases, the methods generated by AutoValue are essentially identical
to those you'd write yourself.

IDEs, too, have facilities to generate equa'ls and hashCode methods, but the
resulting source code is more verbose and less readable than code that uses

AutoValue, does not track changes in the class automatically, and therefore
requires testing. That said, having IDEs generate equal s (and hashCode) methods
is generally preferable to implementing them manually because IDEs do not make
careless mistakes, and humans do.

In summary, don't override the equal s method unless you have to: in many
cases, the implementation inherited from Object does exactly what you want. If
you do override equal s, make sure to compare all of the class's significant fields
and to compare them in a manner that preserves all five provisions of the equal s

contract.

48 CHAPTER3 METHODSCOMMONTOALLOBJECTS

When you are finished writing your equal s method, ask yourself three

questions: Is it symmetric? Is it transitive? Is it consistent? And don't just ask

yourself; write unit tests to check, unless you used AutoValue (page 49) to gener-

ate your equal s method, in which case you can safely omit the tests. If the proper-

ties fail to hold, figure out why, and modify the equal s method accordingly' Of

course your equal s method must also satisfy the other two properties (reflexivity

and non-nullity), but these two usually take care of themselves.

An equal s method constructed according to the previous recipe is shown in

this simplistic PhoneNumber class:

// C'lass with a typical equals method
public final class PhoneNumber {

pr-ivate final short areaCode, prefix, lineNum;

public PhoneNumber(int areacode, int prefix, int lineNum) {
thi s. areaCode = rangeCheck(areaCode, 999, "area code") ;

this.prefix = rangeCheck(prefix, 999, "prefix");
this.lineNum = ranOeCheck(lineNum, 9999, "1ine num");

]
private static short rangeCheck(int val, int max, String arg) {

if (val < 0 I I val > max)
throw new IllegalArgumentException(arg + val);

return (short) val;
]
@Override pub'lic boolean equals(Object o) {

if (o == this)
return true;

if (! (o instanceof PhoneNumber))
return false;

PhoneNumber Pn = (PhoneNumber)o;
return pn'lineNum == lineNum && pn.prefix == prefix

&& pn. areaCode == areacode;
]
... // Remainder omitted

]

Here are a few final caveats:

. Always override hashCode when you override equal s (Item 11)'

. Don,t try to be too clever. If you simply test fields for equality, it's not hard

to adhere to the equal s contract. If you are overly aggressive in searching for

equivalence, it's easy to get into trouble. It is generally a bad idea to take any

form of aliasing into account. For example, the Fi I e class shouldn't attempt to

equate symbolic links referring to the same file. Thankfully, it doesn't.

ITEM]O: OBEYTHEGENERALCONTRACTWHEN OVERRIDING EQUALS 49

' Don't substitute another type for object in the equal s declaration. It is not
uncommon for a programmer to write an equa"ls method that looks like this
and then spend hours puzzling over why it doesn't work properly:

// Broken - parameter type must be Object!
public boolean equals(MyClass o) {

]
The problem is that this method does not override Object.equals, whose
argument is of type Object, but overloads it instead (Item52). It is
unacceptable to provide such a "strongly typed" equal s method even in
addition to the normal one, because it can cause Override annotations in
subclasses to generate false positives and provide a false sense of security.

Consistent use of the Ove r ri de annotation, as illustrated throughout this item,
will prevent you from making this mistake (Item 40). This equal s method
won't compile, and the error message will tell you exactly what is wrong:

// Still broken, but won't compile
@Override public boolean equals(MyClass o) {

]
Writing and testing equal s (and hashCode) methods is tedious, and the result-

ing code is mundane. An excellent alternative to writing and testing these methods
manually is to use Google's open source AutoValue framework, which automati-
cally generates these methods for you, triggered by a single annotation on the
class . In most cases, the methods generated by AutoValue are essentially identical
to those you'd write yourself.

IDEs, too, have facilities to generate equals and hashCode methods, but the
resulting source code is more verbose and less readable than code that uses

AutoValue, does not track changes in the class automatically, and therefore
requires testing. That said, having IDEs generate equal s (and hashCode) methods
is generally preferable to implementing them manually because IDEs do not make
careless mistakes, and humans do.

In summary, don't override the equals methodunless you have to: in many
cases, the implementation inherited from Object does exactly what you want. If
you do override equal s, make sure to compare all of the class's significant fields
and to compare them in a manner that preserves all five provisions of the equal s

contract.

48 CHAPTER3 METHODSCOMMONTOALLOB'IECTS

When you are finished writing your equa'l s method, ask yourself three

questions: Is it symmetric? Is it transitive? Is it consistent? And don't just ask

yourself; write unit tests to check, unless you used AutoValue (page 49) to genef-

ate your equal s method, in which case you can safely omit the tests. If the proper-

ties fail to hold, figure out why, and modify the equal s method accordingly. Of

course your equal s method must also satisfy the other two properties (reflexivity

and non-nullity), but these two usually take care of themselves'

An equal s method constructed according to the previous recipe is shown in

this simplistic PhoneNumbe r class:

// Class with a typical equals method
public final class PhoneNumber {

private final short areaCode, prefix, lineNum;

public PhoneNumber(int areacode,'int prefix, int lineNum) {
thi s. areaCode = rangeCheck(areaCode , 999, "area code") ;

this.prefix = rangeCheck(prefix, 999, "prefix");
this.lineNum = rangeCheck(lineNum, 9999, "1ine num");

1
J

private static short rangecheck(int val, int max, string arg) {
if (val < 0 I I val > max)

throw new IllegalArgumentException(arg + ": " + val);
return (short) val;

]
@Override public boolean equals(Object o) {

if (o =: this)
return true;

if (l(o instanceof PhoneNumber))
return false;

PhoneNumber Pn = (PhoneNumber)o;
return pn.-lineNum == lineNum && pn'prefiv == prefix

&& pn.areaCode == areacode;
]
... // Remainder omitted

]

Here are a few final caveats:

. Always override hashCode when you override equal s (Item 11)

. Don't try to be too clever. If you simply test fields for equality, it's not hard

to adhere to the equal s contract. If you are overly aggressive in searching for

equivalence, it's easy to get into trouble. It is generally a bad idea to take any

form of aliasing into account. For example, the Fi I e class shouldn't attempt to

equate symbolic links referring to the same file. Thankfully, it doesn't.

