80

CHAPTER 4 CLASSES AND INTERFACES

Item 17: Minimize mutability

An immutable class is simply a class whose instances cannot be modified. All of
the information contained in each instance is fixed for the lifetime of the object, so
no changes can ever be observed. The Java platform libraries contain many
immutable classes, including String, the boxed primitive classes, and
BigInteger and BigDecimal. There are many good reasons for this: Immutable
classes are easier to design, implement, and use than mutable classes. They are
less prone to error and are more secure.
To make a class immutable, follow these five rules:

1. Don’t provide methods that modify the object’s state (known as mutators).

2. Ensure that the class can’t be extended. This prevents careless or malicious
subclasses from compromising the immutable behavior of the class by
behaving as if the object’s state has changed. Preventing subclassing is
generally accomplished by making the class final, but there is an alternative
that we’ll discuss later.

3. Make all fields final. This clearly expresses your intent in a manner that is en-
forced by the system. Also, it is necessary to ensure correct behavior if a refer-
ence to a newly created instance is passed from one thread to another without
synchronization, as spelled out in the memory model [JLS, 17.5; Goetz06, 16].

4. Make all fields private. This prevents clients from obtaining access to
mutable objects referred to by fields and modifying these objects directly.
While it is technically permissible for immutable classes to have public final
fields containing primitive values or references to immutable objects, it is not
recommended because it precludes changing the internal representation in a
later release (Items 15 and 16).

5. Ensure exclusive access to any mutable components. If your class has any
fields that refer to mutable objects, ensure that clients of the class cannot obtain
references to these objects. Never initialize such a field to a client-provided
object reference or return the field from an accessor. Make defensive copies
(Item 50) in constructors, accessors, and readObject methods (Item 88).

Many of the example classes in previous items are immutable. One such class
is PhoneNumber in Item 11, which has accessors for cach attribute but no corre-
sponding mutators. Here is a slightly more complex example:



)

ITEM 17: MINIMIZE MUTABILITY 81

// Immutable complex number class

public final class Complex {
private final double re;
private final double 1im;

pubTlic Complex(double re, double im) {
this.re = re;
this.im = im;

}

public double realPart() { return re; }
public double imaginaryPart() { return im; }

pubTlic Complex
return new
}

public Complex
return hew
}

public Complex
return new

plus(Complex ¢c) {
Complex(re + c.re, im + c.im);

minus (CompTlex c) {
Complex(re - c.re, im - c.im);

times(Complex ¢) {
Complex(re = c.re - 1im = c.im,

re « c.im + im = c.re);
}
public Complex dividedBy(Complex c) {
double tmp = c.re * c.re + c.im = c.im;
return new Complex((re % c.re + im = c.im) / tmp,
(im « c.re - re * c.im) / tmp);
}

@verride public boolean equals(Object o) {
if (o == this)
return true;
if (! (o instanceof Complex))
return false;
Complex ¢ = (Complex) o;

// See page 47 to find out why we use compare instead of ==
return Double.compare(c.re, re) == 0
&& Double.compare(c.im, im) == 9;
}
@Override public int hashCode() {
return 31 = Double.hashCode(re) + Double.hashCode(im);
}

@verride public String toString() {

return "(" + re + "+ " + dm + ")";
}




82

CHAPTER 4 CLASSES AND INTERFACES

This class represents a complex number (a number with both real and imagi-
nary parts). In addition to the standard Object methods, it provides accessors for
the real and imaginary parts and provides the four basic arithmetic operations:
addition, subtraction, multiplication, and division. Notice how the arithmetic oper-
ations create and return a new Complex instance rather than modifying this
instance. This pattern is known as the functional approach because methods return
the result of applying a function to their operand, without modifying it. Contrast it
to the procedural or imperative approach in which methods apply a procedure to
their operand, causing its state to change. Note that the method names are preposi-
tions (such as plus) rather than verbs (such as add). This emphasizes the fact that
methods don’t change the values of the objects. The BigInteger and BigDecimal
classes did not obey this naming convention, and it led to many usage errors.

The functional approach may appear unnatural if you’re not familiar with it
but it enables immutability, which has many advantages. Immutable objects are
simple. An immutable object can be in exactly one state, the state in which it was
created. If you make sure that all constructors establish class invariants, then it is
guaranteed that these invariants will remain true for all time, with no further effort
on your part or on the part of the programmer who uses the class. Mutable objects,
on the other hand, can have arbitrarily complex state spaces. If the documentation
does not provide a precise description of the state transitions performed by muta-
tor methods, it can be difficult or impossible to use a mutable class reliably.

Immutable objects are inherently thread-safe; they require no synchroni-
zation. They cannot be corrupted by multiple threads accessing them concur-
rently. This is far and away the easiest approach to achieve thread safety. Since no
thread can ever observe any effect of another thread on an immutable object,
immutable objects can be shared freely. Immutable classes should therefore
encourage clients to reuse existing instances wherever possible. One easy way to
do this is to provide public static final constants for commonly used values. For
example, the Comp1ex class might provide these constants:

public static final Complex ZERO
public static final Complex ONE
public static final Complex I

new Complex(@, 0);
new Complex(l, 0);
new Complex(@, 1);

This approach can be taken one step further. An immutable class can provide
static factories (Item 1) that cache frequently requested instances to avoid creating
new instances when existing ones would do. All the boxed primitive classes and
BigInteger do this. Using such static factories causes clients to share instances
instead of creating new ones, reducing memory footprint and garbage collection



ITEM 17: MINIMIZE MUTABILITY

costs. Opting for static factories in place of public constructors when designing a
new class gives you the flexibility to add caching later, without modifying clients.

A consequence of the fact that immutable objects can be shared freely is that
you never have to make defensive copies of them (Item 50). In fact, you never
have to make any copies at all because the copies would be forever equivalent to
the originals. Therefore, you need not and should not provide a clone method or
copy constructor (Item 13) on an immutable class. This was not well understood
in the early days of the Java platform, so the String class does have a copy con-
structor, but it should rarely, if ever, be used (Item 6).

Not only can you share immutable objects, but they can share their inter-
nals. For example, the BigInteger class uses a sign-magnitude representation
internally. The sign is represented by an int, and the magnitude is represented by
an int array. The negate method produces a new BigInteger of like magnitude
and opposite sign. It does not need to copy the array even though it is mutable; the
newly created BigInteger points to the same internal array as the original.

Immutable objects make great building blocks for other objects, whether
mutable or immutable. It’s much easier to maintain the invariants of a complex
object if you know that its component objects will not change underneath it. A
special case of this principle is that immutable objects make great map keys and
set elements: you don’t have to worry about their values changing once they’re in
the map or set, which would destroy the map or set’s invariants.

Immutable objects provide failure atomicity for free (Item 76). Their state
never changes, so there is no possibility of a temporary inconsistency.

The major disadvantage of immutable classes is that they require a
separate object for each distinct value. Creating these objects can be costly,
especially if they are large. For example, suppose that you have a million-bit
BigInteger and you want to change its low-order bit:

BigInteger moby = ...;

moby = moby.fTipBit(0);

The f11pBit method creates a new BigInteger instance, also a million bits long,
that differs from the original in only one bit. The operation requires time and
space proportional to the size of the BigInteger. Contrast this to
java.util.BitSet. Like BigInteger, BitSet represents an arbitrarily long
sequence of bits, but unlike BigInteger, BitSet is mutable. The BitSet class
provides a method that allows you to change the state of a single bit of a million-
bit instance in constant time:

BitSet moby = ...;
moby.f1ip(0@);

83




84

CHAPTER 4 CLASSES AND INTERFACES

The performance problem is magnified if you perform a multistep operation
that generates a new object at every step, eventually discarding all objects except
the final result. There are two approaches to coping with this problem. The first is
to guess which multistep operations will be commonly required and to provide
them as primitives. If a multistep operation is provided as a primitive, the
immutable class does not have to create a separate object at each step. Internally,
the immutable class can be arbitrarily clever. For example, BigInteger has a pack-
age-private mutable “companion class” that it uses to speed up multistep operations
such as modular exponentiation. It is much harder to use the mutable companion
class than to use BigInteger, for all of the reasons outlined earlier. Luckily, you
don’t have to use it: the implementors of BigInteger did the hard work for you.

The package-private mutable companion class approach works fine if you can
accurately predict which complex operations clients will want to perform on your
immutable class. If not, then your best bet is to provide a public mutable
companion class. The main example of this approach in the Java platform libraries
is the String class, whose mutable companion is StringBuilder (and its
obsolete predecessor, StringBuffer).

Now that you know how to make an immutable class and you understand the
pros and cons of immutability, let’s discuss a few design alternatives. Recall that
to guarantee immutability, a class must not permit itself to be subclassed. This can
be done by making the class final, but there is another, more flexible alternative.
Instead of making an immutable class final, you can make all of its constructors
private or package-private and add public static factories in place of the public
constructors (Item 1). To make this concrete, here’s how Complex would look if
you took this approach:

// Immutable class with static factories instead of constructors
public class Complex {

private final double re;

private final double 1im;

private Complex(double re, double im) {
this.re = re;
this.im = im;

i

public static Complex valueOf(double re, double im) {
return new Complex(re, im);
}

... // Remainder unchanged



ITEM 17: MINIMIZE MUTABILITY

This approach is often the best alternative. It is the most flexible because it
allows the use of multiple package-private implementation classes. To its clients
that reside outside its package, the immutable class is effectively final because it is
impossible to extend a class that comes from another package and that lacks a
public or protected constructor. Besides allowing the flexibility of multiple
implementation classes, this approach makes it possible to tune the performance
of the class in subsequent releases by improving the object-caching capabilities of
the static factories.

It was not widely understood that immutable classes had to be effectively final
when BigInteger and BigDecimal were written, so all of their methods may be
overridden. Unfortunately, this could not be corrected after the fact while preserv-
ing backward compatibility. If you write a class whose security depends on the
immutability of a BigInteger or BigDecimal argument from an untrusted client,
you must check to see that the argument is a “real” BigInteger or BigDecimal,
rather than an instance of an untrusted subclass. If it is the latter, you must defen-
sively copy it under the assumption that it might be mutable (Item 50):

public static BigInteger safeInstance(BigInteger val) {
return val.getClass() == BigInteger.class ?
val : new BigInteger(val.toByteArray());
}

The list of rules for immutable classes at the beginning of this item says that
no methods may modify the object and that all its fields must be final. In fact these
rules are a bit stronger than necessary and can be relaxed to improve performance.
In truth, no method may produce an externally visible change in the object’s state.
However, some immutable classes have one or more nonfinal fields in which they
cache the results of expensive computations the first time they are needed. If the
same value is requested again, the cached value is returned, saving the cost of
recalculation. This trick works precisely because the object is immutable, which
guarantees that the computation would yield the same result if it were repeated.

For example, PhoneNumber’s hashCode method (Item 11, page 53) computes
the hash code the first time it’s invoked and caches it in case it’s invoked again.
This technique, an example of lazy initialization (Item 83), is also used by
String.

One caveat should be added concerning serializability. If you choose to have
your immutable class implement Serializable and it contains one or more fields
that refer to mutable objects, you must provide an explicit readObject or
readResolve method, or use the ObjectOutputStream.writeUnshared and

85




86

CHAPTER 4 CLASSES AND INTERFACES

ObjectInputStream. readUnshared methods, even if the default serialized form
is acceptable. Otherwise an attacker could create a mutable instance of your class.
This topic is covered in detail in Item 88.

To summarize, resist the urge to write a setter for every getter. Classes should
be immutable unless there’s a very good reason to make them mutable.
Immutable classes provide many advantages, and their only disadvantage is the
potential for performance problems under certain circumstances. You should
always make small value objects, such as PhoneNumber and Comp1ex, immutable.
(There are several classes in the Java platform libraries, such as java.util.Date
and java.awt.Point, that should have been immutable but aren’t.) You should
seriously consider making larger value objects, such as String and BigInteger,
immutable as well. You should provide a public mutable companion class for your
immutable class only once you’ve confirmed that it’s necessary to achieve satis-
factory performance (Item 67).

There are some classes for which immutability is impractical. If a class
cannot be made immutable, limit its mutability as much as possible. Reducing
the number of states in which an object can exist makes it easier to reason about
the object and reduces the likelihood of errors. Therefore, make every field final
unless there is a compelling reason to make it nonfinal. Combining the advice of
this item with that of Item 15, your natural inclination should be to declare every
field private final unless there’s a good reason to do otherwise.

Constructors should create fully initialized objects with all of their invari-
ants established. Don’t provide a public initialization method separate from the
constructor or static factory unless there is a compelling reason to do so. Similarly,
don’t provide a “reinitialize” method that enables an object to be reused as if it
had been constructed with a different initial state. Such methods generally provide
little if any performance benefit at the expense of increased complexity.

The CountDownLatch class exemplifies these principles. It is mutable, but its
state space is kept intentionally small. You create an instance, use it once, and it’s
done: once the countdown latch’s count has reached zero, you may not reuse it.

A final note should be added concerning the Complex class in this item. This
example was meant only to illustrate immutability. It is not an industrial-strength
complex number implementation. It uses the standard formulas for complex
multiplication and division, which are not correctly rounded and provide poor
semantics for complex NaNs and infinities [Kahan91, Smith62, Thomas94].



