
ITEMT: ELIMINATEOBSOLETEOBJECTREFERENCES 27

increased garbage collector activity or increased memory footprint. In extreme
cases, such memory leaks can cause disk paging and even program failure with an

OutOfMemoryError, but such failures are relatively rare.

So where is the memory leak? If a stack grows and then shrinks, the objects
that were popped off the stack will not be garbage collected, even if the program
using the stack has no more references to them. This is because the stack main-
tains obsolete references to these objects. An obsolete reference is simply a refer-
ence that will never be dereferenced again. In this case, any references outside of
the "active portion" of the element array are obsolete. The active portion consists
of the elements whose index is less than si ze.

Memory leaks in garbage-collected languages (more properly known as unin-
tentional object retentions) are insidious. If an object reference is unintentionally
retained, not only is that object excluded from garbage collection, but so too are

any objects referenced by that object, and so on. Even if only a few object refer-
ences are unintentionally retained, many, many objects may be prevented from
being garbage collected, with potentially large effects on performance.

The fix for this sort of problem is simple: null out references once they
become obsolete. In the case of our Stack class, the reference to an item becomes
obsolete as soon as it's popped off the stack. The corrected version of the pop

method looks like this:

public Object popO {
if (size == O)

throw new EmptyStackExceptionO ;

Object result = elements[--size];
elements[size] = nulll // Eliminate obsolete reference
return result;

]

An added benefit of nulling out obsolete references is that if they are subse-
quently dereferenced by mistake, the program will immediately fail with a

NullPointerExcept'ion, rather than quietly doing the wrong thing. It is always
beneficial to detect programming errors as quickly as possible.

When programmers are first stung by this problem, they may overcompensate
by nulling out every object reference as soon as the program is finished using it.
This is neither necessary nor desirable; it clutters up the program unnecessarily.
Nulling out object references should be the exception rather than the norm.
The best way to eliminate an obsolete reference is to let the variable that contained
the reference fall out of scope. This occurs naturally ifyou define each variable in
the narrowest possible scope (Item 57).

26 CHAPTER2 CREATINGANDDESTROYINGOBJECTS

Item 7: Eliminate obsolete object references

If you switched from a language with manual memory management, such as C or

C++, to a garbage-collected language such as Java, your job as a programmer was

made much easier by the fact that your objects are automatically reclaimed when

you're through with them. It seems almost like magic when you first experience it.

It can easily lead to the impression that you don't have to think about memory

management, but this isn't quite true.

Consider the following simple stack implementation:

// Can you spot the "memorY leak"?
pubiic class Stack {

private Object[] elements;
private int size = Oi
private static final int DEFAULT-INITIAL-CAp4611y = 1-6i

public StackO {
elements = llêw ObjectIDEFAULT-INITIAL-CAPACITY] ;

i
pubf ic void push(Object e) {

ensureCapacityO;
elementsfsize++] = s;

]
pubf ic Object popO {

if (size == 0)
throw new EmPtYStackExcePtionO ;

return el ements [--si ze] ;

]

/ t,*,

,r Ensure space for at least one more element, roughly
,t doubl'ing the capacity each time the array needs to grow.
*/

private void ensureCaPacitYO {
i f (el ements. l ength =: si ze)

elements = Arrays.copyOf(elements, 2 't size + L);
]

]

There's nothing obviously wrong. with this program (but see Item 29 for a

generic version). You could test it exhaustively, and it would pass every test with

flying colors, but there's a problem lurking. Loosely speaking, the program has a

"memory leak," which can silently manifest itself as reduced performance due to

t (, ''a'-r'rP.-,
'--..'\ 

^,). ,.(""
9.Q/(f'q t



ITEMT: ELIMINATEOBSOLETEOBJECTREFERENCES 27

increased garbage collector activity or increased memory footprint. In extreme
cases, such memory leaks can cause disk paging and even program failure with an

0utOfMemoryError, but such failures are relatively rare.

So where is the memory leak? If a stack grows and then shrinks, the objects
that were popped off the stack will not be garbage collected, even if the program
using the stack has no more references to them. This is because the stack main-
tains obsolete references to these objects. An obsolete reference is simply a refer-
ence that will never be dereferenced again. In this case, any references outside of
the "active portion" of the element array are obsolete. The active portion consists
of the elements whose index is less than size.

Memory leaks in garbage-collected languages (more properly known as unin-
tentional object retentions) are insidious. If an object reference is unintentionally
retained, not only is that object excluded from garbage collection, but so too are
any objects referenced by that object, and so on. Even if only a few object refer-
ences are unintentionally retained, many, many objects may be prevented from
being garbage collected, with potentially large effects on performance.

The fix for this sort of problem is simple: null out references once they
become obsolete. In the case of our Stack class, the reference to an item becomes
obsolete as soon as it's popped off the stack. The corrected version of the pop

method looks like this:

public Object popO {
if (size == 0)

throw new EmptystackExceptionO ;

Object result = elements[--size];
elements[size] = null; // Eliminate obso'lete reference
return result;

]

An added benefit of nulling out obsolete references is that if they are subse-
quently dereferenced by mistake, the program will immediately fail with a

NullPointerException, rather than quietly doing the wrong thing. It is always
beneficial to detect programming errors as quickly as possible.

When prograrnmers are first stung by this problem, they may overcompensate
by nulling out every object reference as soon as the program is finished using it.
This is neither necessary nor desirable; it clutters up the program unnecessarily.
Nulling out object references should be the exception rather than the norm.
The best way to eliminate an obsolete reference is to let the variable that contained
the reference fall out of scope. This occurs naturally ifyou define each variable in
the narrowest possible scope (Item 57).

26 CHAPTER2 CREATINGANDDESTROYINGOBJECTS

Item 7: Eliminate obsolete object references

If you switched from a language with manual memory management, such as C or

C++, to a garbage-collected language such as Java, your job as a programmer was

made much easier by the fact that your objects are automatically reclaimed when

you're through with them. It seems almost like magic when you first experience it.

It can easily lead to the impression that you don't have to think about memory

management, but this isn't quite true.

Consider the following simple stack implementation:

// Can you spot the "memory 1eak"?
public class Stack {

private Object[] elements;
private int size = Oi
private static final int DEFAULT-INITIAL-CAPACITY = L6;

public StackO {
elements = nêw ObjectIDEFAULT-INITIAL-CAPACITY] ;

]

public void push(Object e) {
ensureCapaci tyO ;

elements[size++] = s;
]
pubi 'i c 0b j ect pop O {

if (size == @)

throw new EmptyStackExcePtionO ;

return elements[--size] ;

]

/ t,*
.t Ensure space for at least one more element, rough'ly
*. doubling the capacity each time the array needs to grow.
,t/

private void ensureCapacityO {
if (elements.length == size)

el ements = Arrays. copyOf (el ements, 2 't si ze + l-) ;

]
]

There's nothing obviously wrong with this program (but see ltem29 for a

generic version). You could test it exhaustively, and it would pass every test with

flying colors, but there's a problem lurking. Loosely speaking, the program has a

"memory leak," which can silently manifest itself as reduced performance due to



r ITEMS: AVOIDFINALIZERSANDCLEANERS 29

Item 8: Avoid frnalizers and cleaners

Finalizers are unpredictable, often dangerous, and generally unnecessary.
Their use can cause erratic behavior, poor performance, and portability problems.
Finalizers have a few valid uses, which we'll cover later in this item, but as a rule,
you should avoid them. As of Java 9, finalizers have been deprecated, but they are
still being used by the Java libraries. The Java 9 replacement for finalizers is
cleaners. Cleaners are less dangerous than finalizers, but stilt unpredictable,
slow, and generally unnecessary.

C++ programmers are cautioned not to think of finalizers or cleaners as Java's
analogue of C++ destructors. In C++, destructors are the normal way to reclaim
the resources associated with an object, a necessary counterpart to constructors. In
Java, the garbage collector reclaims the storage associated with an object when it
becomes unreachable, requiring no special effort on the part of the programmer.
C++ destructors are also used to reclaim other nonmemory resources. In Java, a
try-with-resources or try-fi nal 1y block is used for this purpose (Item 9).

One shortcoming of finalizers and cleaners is that there is no guarantee they'll
be executed promptly ULS, 12.61. It can take arbitrarily long between the time
that an object becomes unreachable and the time its finalizer or cleaner runs. This
means that you should never do anything time-critical in a finalizer or cleaner.
For example, it is a grave error to depend on a finalizer or cleaner to close files
because open file descriptors are a limited resource. If many files are left open as a

result of the system's tardiness in running finalizers or cleaners, a program may
fail because it can no longer open files.

The promptness with which finalizers and cleaners are executed is primarily a

function of the garbage collection algorithm, which varies widely across imple-
mentations. The behavior of a program that depends on the promptness of finalizer
or cleaner execution may likewise vary. It is entirely possible that such a program
will run perfectly on the JVM on which you test it and then fail miserably on the
one favored by your most important customer.

Tardy finalization is not just a theoretical problem. Providing a finalizer for a
class can arbitrarily delay reclamation of its instances. A colleague debugged a

long-running GUI application that was mysteriously dying with an
OutOfMemoryError. Analysis revealed that at the time of its death, the application
had thousands of graphics objects on its finalizer queue just waiting to be finalized
and reclaimed. Unfortunately, the finalizer thread was running at a lower priority
than another application thread, so objects weren't getting finalized at the rate
they became eligible for finalization. The language specification makes no guar-

r
28 CHAPTER2 CREATINGANDDESTROYINGOBJECTS

So when should you null out a reference? What aspect of the Stack class

makes it susceptible to memory leaks? Simply put, it manages its own memory.

The storage pool consists of the elements of the el ements array (the object refer-

ence cells, not the objects themselves). The elements in the active portion of the

array (as defined earlier) are allocated, and those in the remainder of the affay arc

free. The garbage collector has no way of knowing this; to the garbage collector,

all of the object references in the el ements anay arc equally valid. Only the

programmer knows that the inactive portion of the array is unimportant. The pro-

grammer effectively communicates this fact to the garbage collector by manually

nulling out array elements as soon as they become part of the inactive portion.

Generally speaking, whenever a class manages its own memory' the pro-
grammer should be alert for memory leaks. Whenever an element is freed, any

object references contained in the element should be nulled out.

Another common source of memory leaks is caches. Once you put an

object reference into a cache, it's easy to forget that it's there and leave it in the

cache long after it becomes irrelevant. There are several solutions to this problem.

If you're lucky enough to implement a cache for which an entry is relevant exactly

so long as there are references to its key outside of the cache, represent the cache

as a WeakHashMap; entries will be removed automatically after they become

obsolete. Remember that WeakHashMap is useful only if the desired lifetime of
cache entries is determined by external references to the key, not the value.

More commonly, the useful lifetime of a cache entry is less well defined, with
entries becoming less valuable over time. Under these circumstances, the cache

should occasionally be cleansed of entries that have fallen into disuse. This can be

done by a background thread (perhaps a Schedul edThreadPool Executor) or as a

side effect of adding new entries to the cache. The Li nkedHashMap class facilitates

the latter approach with its removeEldestEntry method. For more sophisticated

caches, you may need to use j ava. 1 ang. ref directly.

A third common source of memory leaks is listeners and other callbacks.

If you implement an API where clients register callbacks but don't deregister them

explicitly, they will accumulate unless you take some action. One way to ensure

that callbacks are garbage collected promptly is to store only weak references to

them, for instance, by storing them only as keys in a WeakHashMap.

Because memory leaks typically do not manifest themselves as obvious

failures, they may remain present in a system for years. They are typically
discovered only as a result of careful code inspection or with the aid of a

debugging tool known as a heap profiler. Therefore, it is very desirable to learn to

anticipate problems like this before they occur and prevent them from happening.


