
II2 CHAPTER4 CLASSESANDINTERFACES

Item}4: Favor static member classes over nonstatic

A nested class is a class defined within another class. A nested class should exist

only to serve its enclosing class. If a nested class would be useful in some other

context, then it should be a top-level class. There are four kinds ofnested classes:

static member classes, nonstatic member classes, anonymous classes, and local
classes. All but the first kind are known as inner classes. This item tells you when

to use which kind of nested class and why.

A static member class is the simplest kind of nested class. It is best thought of
as an ordinary class that happens to be declared inside another class and has

access to all of the enclosing class's members, even those declared private. A
static member class is a static member of its enclosing class and obeys the same

accessibility rules as other static members. If it is declared private, it is accessible

only within the enclosing class, and so forth.

One common use of a static member class is as a public helper class, useful

only in conjunction with its outer class. For example, consider an enum describing

the operations supported by a calculator (Item 34). The Operation enum should

be a public static member class of the Cal cul ator class. Clients of Cal cul ator
could then refer to operations using names like Cal cul ator .Ope rati on . PLUS and

Cal cul ator.Operati on. MINUS.

Syntactically, the only difference between static and nonstatic member classes

is that static member classes have the modifier stati c in their declarations.

Despite the syntactic similarity, these two kinds of nested classes are very differ-

ent. Each instance of a nonstatic member class is implicitly associated with an

enclosing instance of its containing class. Within instance methods of a nonstatic

member class, you can invoke methods on the enclosing instance or obtain a refer-

ence to the enclosing instance using the qualified /àls construct ULS, 15.8.41.If an

instance of a nested class can exist in isolation from an instance of its enclosing

class, then the nested class must be a static member class: it is impossible to create

an instance of a nonstatic member class without an enclosing instance.

The association between a nonstatic member class instance and its enclosing

instance is established when the member class instance is created and cannot be

modified thereafter. Normally, the association is established automatically by

invoking a nonstatic member class constructor from within an instance method of
the enclosing class. It is possible, though rare, to establish the association

manually using the expression enclosi nglnstance. new MemberClass(args).
As you would expect, the association takes up space in the nonstatic member class

instance and adds time to its construction.

ITEM 24: FAVOR STATIC MEMBER CLASSES OVER NONSTATIC 1 13

One common use of a nonstatic member class is to define an Adapter

[Gamma95] that allows an instance of the outer class to be viewed as an instance

of some unrelated class. For example, implementations of the Map interface typi-
cally use nonstatic member classes to implement their collection views, which are

returned by Map's keySet, entryset, and values methods. Similarly, implemen-
tations of the collection interfaces, such as Set and Li st, typically use nonstatic
member classes to implement their iterators:

// Typical use of a nonstatic member class
public class MySet<E> extends AbstractSet<E> {

... // Bulk of the class omitted

@Override public Iterator<E> iteratorO {
return new lt4ylteratorO ;

]

private class Mylterator implements lterator<E> {

]
]

If you declare a member class that does not require access to an enclosing
instance, always put the static modifier in its declaration, making it a static
rather than a nonstatic member class. If you omit this modifier, each instance will
have a hidden extraneous reference to its enclosing instance. As previously men-

tioned, storing this reference takes time and space. More seriously, it can result in
the enclosing instance being retained when it would otherwise be eligible for gar-

bage collection (Item 7). The resulting memory leak can be catastrophic. It is

often difficult to detect because the reference is invisible.
A common use of private static member classes is to represent components of

the object represented by their enclosing class. For example, consider a Map

instance, which associates keys with values. Many Map implementations have an

internal Entry object for each key-value pair in the map. While each entry is asso-

ciated with a map, the methods on an entry (getKey, getval ue, and setVal ue) do

not need access to the map. Therefore, it would be wasteful to use a nonstatic

member class to represent entries: a private static member class is best. If you

accidentally omit the stati c modifier in the entry declaration, the map will still
work, but each entry will contain a supetfluous reference to the map, which wastes

space and time.

It is doubly important to choose conectly between a static and a nonstatic

member class if the class in question is a public or protected member of an



II2 CHAPTER4 CIA,SSESAND INTERFACES

Item 24: Favor static member classes over nonstatic

A nested c/ass is a class defined within another class. A nested class should exist

only to serve its enclosing class. If a nested class would be useful in some other

context, then it should be a top-level class. There are four kinds of nested classes:

static member classes, nonstatic member classes, anonymous classes, and local
classes. All but the first kind are known as inner classes. This item tells you when

to use which kind of nested class and why.

A static member class is the simplest kind of nested class. It is best thought of
as an ordinary class that happens to be declared inside another class and has

access to all of the enclosing class's members, even those declared private. A
static member class is a static member of its enclosing class and obeys the same

accessibility rules as other static members. If it is declared private, it is accessible

only within the enclosing class, and so forth.

One common use of a static member class is as a public helper class, useful

only in conjunction with its outer class. For example, consider an enum describing

the operations supporled by a calculator (Item 34). The Operation enum should

be a public static member class of the Calculator class. Clients of Calculator
could then refer to operations using names like Cal cul ato r .Operat'ion . PLUS and

Cal cul ator. Operati on . MINUS.

Syntactically, the only difference between static and nonstatic member classes

is that static member classes have the modifier stati c in their declarations.

Despite the syntactic similarity, these two kinds of nested classes are very differ-
ent. Each instance of a nonstatic member class is implicitly associated with an

enclosing instance of its containing class. Within instance methods of a nonstatic

member class, you can invoke methods on the enclosing instance or obtain a refer-

ence to the enclosing instance using the qualified /hls construct [JLS, 15.8.4].If an

instance of a nested class can exist in isolation from an instance of its enclosing

class, then the nested class must be a static member class: it is impossible to create

an instance of a nonstatic member class without an enclosing instance.

The association between a nonstatic member class instance and its enclosing

instance is established when the member class instance is created and cannot be

modified thereafter. Normally, the association is established automatically by

invoking a nonstatic member class constructor from within an instance method of
the enclosing class. It is possible, though rare, to establish the association

manually using the expression enclosinglnstance. new MemberClass(args).
As you would expect, the association takes up space in the nonstatic member class

instance and adds time to its construction.

ITEM 24: FAVOR STATIC MEMBER CLASSES OVER NONSTATIC 1 13

One common use of a nonstatic member class is to define an Adapter

[Gamma95] that allows an instance of the outer class to be viewed as an instance

of some unrelated class. For example, implementations of the Map interface typi-
cally use nonstatic member classes to implement their collection views, which are

returned by Map's keySet, entryset, and values methods. Similarly, implemen-
tations of the collection interfaces, such as Set and Li st, typically use nonstatic
member classes to implement their iterators:

// Typical use of a nonstatic member class
pubf ic class MySet<E> extends AbstractSet<E> {

... // Bulk of the class omitted

@Override public Ïterator<E> iteratorO {
return new MylteratorO ;

]

private class Mylterator implements fterator<E> {

]

If you declare a member class that does not require access to an enclosing
instance, always put the static modifier in its declaration, making it a static
rather than a nonstatic member class. If you omit this modifier, each instance will
have a hidden extraneous reference to its enclosing instance. As previously men-
tioned, storing this reference takes time and space. More seriously, it can result in
the enclosing instance being retained when it would otherwise be eligible for gar-

bage collection (Item 7). The resulting memory leak can be catastrophic. It is
often difficult to detect because the reference is invisible.

A common use of private static member classes is to represent components of
the object represented by their enclosing class. For example, consider a Map

instance, which associates keys with values. Many Map implementations have an

internal Entry object for each key-value pair in the map. While each entry is asso-

ciated with a map, the methods on an entry (getKey, getval ue, and setVal ue) do

not need access to the map. Therefore, it would be wasteful to use a nonstatic

member class to represent entries: a private static member class is best. If you

accidentally omit the stati c modifier in the entry declaration, the map will still
work, but each entry will contain a superfluous reference to the map, which wastes

space and time.
It is doubly important to choose correctly between a static and a nonstatic

member class if the class in question is a public or protected member of an

]

?r
{



II4 CHAPTER 4 CLASSES AND INTERFACES

exported class. In this case, the member class is an exported API element and can-

not be changed from a nonstatic to a static member class in a subsequent release

without violating backward compatibility.
As you would expect, an anonymous class has no name. It is not a member of

its enclosing class. Rather than being declared along with other members, it is

simultaneously declared and instantiated at the point of use. Anonymous classes

are permitted at any point in the code where an expression is legal. Anonymous

classes have enclosing instances if and only if they occur in a nonstatic context.

But even if they occur in a static context, they cannot have any static members

other than constant variables, which are final primitive or string fields initialized

to constant expressions ULS, 4.12.41.

There are many limitations on the applicability of anonymous classes' You

can't instantiate them except at the point they're declared. You can't perform

i nstanceof tests or do anything else that requires you to name the class. You

can't declare an anonymous class to implement multiple interfaces or to extend a

class and implement an interface at the same time. Clients of an anonymous class

can't invoke any members except those it inherits from its supertype. Because

anonymous classes occur in the midst of expressions, they must be kept short-
about ten lines or fewer-or readability will suffer.

Before lambdas were added to Java (Chapter 6), anonymous classes were the

preferred means of creating smallfunction obiects and process objects on the fly,

but lambdas are now preferred (Item 42). Another common use of anonymous

classes is in the implementation of static factory methods (see i ntArrayAsLi st in
Item 20).

Local classes are the least frequently used of the four kinds of nested classes. A
local class can be declared practically anywhere a local variable can be declared and

obeys the same scoping rules. Local classes have attributes in common with each of
the other kinds of nested classes. Like member classes, they have names and can be

used repeatedly. Like anonymous classes, they have enclosing instances only if they

are defined in a nonstatic context, and they cannot contain static members. And like

anonymous classes, they should be kept short so as not to harm readability.

To recap, there are four different kinds of nested classes, and each has its

place. If a nested class needs to be visible outside of a single method or is too long

to fit comfortably inside a method, use a member class. If each instance of a mem-

ber class needs a reference to its enclosing instance, make it nonstatic; otherwise,

make it static. Assuming the class belongs inside a method, if you need to create

instances from only one location and there is a preexisting type that characterizes

the class, make it an anonymous class; otherwise, make it a local class.

ITEM 25: LIMIT SOURCE FILES TO A SINGLE TOP.LEVEL CLASS I15

Item 25: Limit source files to a single top-level class

While the Java compiler lets you define multiple top-level classes in a single source
file, there are no benefits associated with doing so, and there are significant risks.
The risks stem from the fact that defining multiple top-level classes in a source file
makes it possible to provide multiple definitions for a class. Which definition gets

used is affected by the order in which the source files are passed to the compiler.
To make this concrete, consider this source file, which contains only a Ma'in

class that refers to members of two other top-level classes (Utensi 1 and Dessert):

pubf ic class Main {
pub'lic static void main(String[] args) {

System.out.println(Utensil .NAME + Dessert.NAME) ;
l
J

]

Now suppose you define both Utensi I and Dessert in a single source file named
Utensil.java:

// Two classes defined in one file. Don't ever do this!
class Utensil {

static final String NAME = "pan";
]

class Dessert {
static final String NAME = "cake";

i
Of course the main program prints pancake.

Now suppose you accidentally make another source file named

Dessert. java that defines the same two classes:

// Two classes defined in one file. Don't ever do this!
class Utensil {

static final String NAME = "pot"i
]

class Dessert {
static final String NAME = "pie";

]

If you're lucky enough to compile the program with the command
javac Mai n. java Dessert. java, the compilation will fail, and the compiler will


