
r I92 CHAPTER4 CIASSESAND INTERFACES

Inheritance is appropriate only in circumstances where the subclass really is a

subtype of the superclass. In other words, a class B should extend a class A only if
an "is-a" relationship exists between the two classes. If you are tempted to have a

class B extend a class A, ask yourself the question: Is every B really an A? If you

cannot truthfully answer yes to this question, B should not extend A. If the answer

is no, it is often the case that B should contain a private instance of A and expose a

different API: A is not an essential part of B, merely a detail of its implementation.

There are a number of obvious violations of this principle in the Java platform

libraries. For example, a stack is not a vector, so Stack should not extend Vector.
Similarly, a property list is not a hash table, so Properties should not extend

Hashtabl e. In both cases, composition would have been preferable.

If you use inheritance where composition is appropriate, you needlessly

expose implementation details. The resulting API ties you to the original imple-

mentation, forever limiting the performance of your class. More seriously, by

exposing the internals you let clients access them directly. At the very least, it can

lead to confusing semantics. For example, if p refers to a Properties instance,

then p.getProperty(key) may yield different results from p.get(key): the for-
mer method takes defaults into account, while the latter method, which is inher-

ited from Hashtabl e, does not. Most seriously, the client may be able to corrupt

invariants of the subclass by modifying the superclass directly. In the case of
Properties, the designers intended that only strings be allowed as keys and val-

ues, but direct access to the underlying Hashtabl e allows this invariant to be vio-
lated. Once violated, it is no longer possible to use other parts of the Properti es

API (l oad and store). By the time this problem was discovered, it was too late to
correct it because clients depended on the use of non-string keys and values.

There is one last set of questions you should ask yourself before deciding to

use inheritance in place of composition. Does the class that you contemplate

extending have any flaws in its API? If so, are you comfortable propagating those

flaws into your class's API? Inheritance propagates any flaws in the superclass's

API, while composition lets you design a new API that hides these flaws.

To summarize, inheritance is powerful, but it is problematic because it
violates encapsulation. It is appropriate only when a genuine subtype relationship
exists between the subclass and the superclass. Even then, inheritance may lead to
fragility if the subclass is in a different package from the superclass and the

superclass is not designed for inheritance. To avoid this fragility, use composition
and forwarding instead of inheritance, especially if an appropriate interface to
implement a wrapper class exists. Not only are wrapper classes more robust than

subclasses, they are also more powerful.

,t

r ITEM 19: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT 93

Item 19: Design and document for inheritance or else prohibit it

Item 18 alerted you to the dangers of subclassing a "foreign" class that was not
designed and documented for inheritance. So what does it mean for a class to be
designed and documented for inheritance?

First, the class must document precisely the effects of overriding any method.
In other words, the class must document its self-use of overridable methods.
For each public or protected method, the documentation must indicate which
overridable methods the method invokes, in what sequence, and how the results of
each invocation affect subsequent processing. (By overridable, we mean nonfinal
and either public or protected.) More generally, a class must document any
circumstances under which it might invoke an overridable method. For example,
invocations might come from background threads or static initializers.

A method that invokes overridable methods contains a description of these
invocations at the end of its documentation comment. The description is in a

special section of the specification, labeled "Implementation Requirements,"
which is generated by the Javadoc tag @i mpl Spec. This section describes the inner
workings of the method. Here's an example, copied from the specification for
java. ut'i I .AbstractCol I ecti on:

public boolean remove(Object o)

Removes a single instance of the specified element from this collection, if it
is present (optional operation). More formally, removes an element e such
that Objects.equals(o, e), if this collection contains one or more such
elements. Returns true if this collection contained the specified element (or
equivalently, if this collection changed as a result of the call).

Implementation Requirements: This implementation iterates over the col-
lection looking for the specified element. If it finds the element, it removes
the element from the collection using the iterator's remove method. Note that
this implementation throws an UnsupportedOperationException if the
iterator returned by this collection's iterator method does not implement
the remove method and this collection contains the specified obiect.

This documentation leaves no doubt that overriding the i terator method will
affect the behavior of the remove method. It also describes exactly how the

behavior of the Tterator returned by the iterator method will affect the
behavior of the remove method. Contrast this to the situation in Item 18, where the
programmer subclassing HashSet simply could not say whether overriding the

add method would affect the behavior of the addAl I method.



ITEM ]9: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT 95

so how do you decide what protected members to expose when you design a
class for inheritance? unfoftunately, there is no magic bullet. The best you can do
is to think hard, take your best guess, and then test it by writing subclasses. you
should expose as few protected members as possible because each one represents
a commitment to an implementation detail. on the other hand, you must not
expose too few because a missing protected member can render a class practically
unusable for inheritance.

The only way to test a class designed for inheritance is to write subclasses.
If you omit a crucial protected member, trying to write a subclass will make the
omission painfully obvious. Conversely, if several subclasses are written and none
uses a protected member, you should probably make it private. Experience shows
that three subclasses are usually sufficient to test an extendable class. One or more
of these subclasses should be written by someone other than the superclass author.

When you design for inheritance a class that is likely to achieve wide use,
realize that you are committingforever to the self-use patterns that you document
and to the implementation decisions implicit in its protected methods and fields.
These commitments can make it difficult or impossible to improve the perfor-
mance or functionality of the class in a subsequent release. Therefore, you must
test your class by writing subclasses before you release it.

Also, note that the special documentation required for inheritance clutters up
normal documentation, which is designed for programmers who create instances
of your class and invoke methods on them. As of this writing, there is little in the
way of tools to separate ordinary API documentation from information of interest
only to programmers implementing subclasses.

There are a few more restrictions that a class must obey to allow inheritance.
Constructors must not invoke overridable methods, directly or indirectly. If
you violate this rule, program failure will result. The superclass constructor runs
before the subclass constructor, so the overriding method in the subclass will get
invoked before the subclass constructor has run. If the overriding method depends
on any initialization performed by the subclass constructor, the method will not
behave as expected. To make this concrete, here's a class that violates this rule:

public class Super {
// Broken - constructor invokes an overridable method
public SuperO {

overri deMeO ;

]
public void overrideMeO {
]

]

94 CHAPTER 4 CI-ASSES AND INTERFACES

But doesn't this violate the dictum that good API documentation should

describe what agiven method does and not how itdoes it? Yes, it does! This is an

unfortunate consequence of the fact that inheritance violates encapsulation' To

document a class so that it can be safely subclassed, you must describe implemen-

tation details that should otherwise be left unspecified'

The @implspec tag was added in Java 8 and used heavily in Java 9. This tag

should be enabled by default, but as of Java 9, the Javadoc utility still ignores it

unless you pass the command line switch -tag " api Note : a : API Note : " .

Designing for inheritance involves more than just documenting patterns of

self-use. To allow programmers to write efficient subclasses without undue pain, a

class may have to provide hooks into its internal workings in the form of judi-

ciously chosen protected methods or, in rare instances, protected fields' For

example, consider the removeRange method from java. uti I .AbstractLi st:

protectedvoidremoveRange(intfromlndex,.inttolndex)

Removes from this list all of the elements whose index is between

fromlndex, inclusive, and tolndex, exclusive. shifts any succeeding

elements to the left (reduces their index). This call shortens the list by

(tolndex - fromlndex) elements. (Iftolndex == fromlndex, this operation

has no effect.)

This method is called by the clear operation on this list and its sublists.

Oveniding this method to take advantage of the internals of the list imple-

mentation can substantially improve the performance of the cl ear operation

on this list and its sublists.

Implementation Requirements: This implementation gets a list iterator

positioned before fromlndex and repeatedly calls Listlterator'next
iollowed by Listlterator.remove, until the entire range has been

removed. Note: If Listlterator.remove requires linear time, this

implementation requires quadratic time'

Parameters:

fromlndex
tolndex

index of first element to be removed.

index after last element to be removed.

This method is of no interest to end users of a Li st implementation. It is

provided solely to make it easy for subclasses to provide a fast clear method on

sublists. In the absence of the removeRange method, subclasses would have to

make do with quadratic performance when the clear method was invoked on

sublists or rewrite the entire subLi st mechanism from scratch-not an easy task!



ITEM 19: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PR)HIBIT IT 95

So how do you decide what protected members to expose when you design a
class for inheritance? unfortunately, there is no magic bullet. The best you can do
is to think hard, take your best guess, and then test it by writing subclasses. you
should expose as few protected members as possible because each one represents
a commitment to an implementation detail. on the other hand, you must not
expose too few because a missing protected member can render a class practically
unusable for inheritance.

The only way to test a class designed for inheritance is to write subclasses.
If you omit a crucial protected member, trying to write a subclass will make the
omission painfully obvious. Conversely, if several subclasses are written and none
uses a protected member, you should probably make it private. Experience shows
that three subclasses are usually sufficient to test an extendable class. One or more
of these subclasses should be written by someone other than the superclass author.

When you design for inheritance a class that is likely to achieve wide use,
realize that you are committingforever to the self-use patterns that you document
and to the implementation decisions implicit in its protected methods and fields.
These commitments can make it difficult or impossible to improve the perfor-
mance or functionality of the class in a subsequent release. Therefore, you must
test your class by writing subclasses before you release it.

Also, note that the special documentation required for inheritance clutters up
normal documentation, which is designed for programmers who create instances
of your class and invoke methods on them. As of this writing, there is little in the
way of tools to separate ordinary API documentation from information of interest
only to programmers implementing subclasses.

There are a few more restrictions that a class must obey to allow inheritance.
Constructors must not invoke overridable methods, directly or indirectly. If
you violate this rule, program failure will result. The superclass constructor runs
before the subclass constructor, so the overriding method in the subclass will get
invoked before the subclass constructor has run. If the overriding method depends
on any initialization performed by the subclass constructor, the method will not
behave as expected. To make this concrete, here's a class that violates this rule:

public class Super {
// Broken - constructor invokes an overridable method
public SuperO {

overri deMeO ;

]
public void overrideMeO {
i

]

94 CHAPTER4 CLASSESANDINTERFACES

But doesn't this violate the dictum that good API documentation should

describe what agiven method does and not how it does it? Yes, it does! This is an

unfortunate consequence of the fact that inheritance violates encapsulation. To

document a class so that it can be safely subclassed, you must describe implemen-

tation details that should otherwise be left unspecified.

The @i mp1 Spec tag was added in Java 8 and used heavily in Java 9. This tag

should be enabled by default, but as of Java 9, the Javadoc utility still ignores it
unless you pass the command line switch -tag "api Note : a: API Note: ".

Designing for inheritance involves more than just documenting patterns of

self-use. To allow programmers to write efficient subclasses without undue pain, a

class may have to provide hooks into its internal workings in the form of judi-

ciously chosen protected methods or, in rare instances, protected fields. For

example, consider the removeRange method from j ava. uti I . Abst ractli st:

protected void removeRange(int fromlndex, int tolndex)

Removes from this list all of the elements whose index is between

fromlndex, inclusive, and tolndex, exclusive. Shifts any succeeding

elements to the left (reduces their index). This call shortens the list by

(tolndex - fromlndex) elements. (Iftolndex == fromlndex, this operation

has no effect.)

This method is called by the clear operation on this list and its sublists.

Oveniding this method to take advantage of the internals of the list imple-

mentation can substantially improve the performance of the cl ear operation

on this list and its sublists.

Implementation Requirements: This implementation gets a list iterator

positioned before fromlndex and repeatedly calls Listlterator.next
followed by Listlterator.remove, until the entire range has been

removed. Note: If Listlterator.remove requires linear time, this

implementation requires quadratic time.

Parameters:

f romlndex index of first element to be removed.

tolndex index after last element to be removed.

This method is of no interest to end users of a Li st implementation. It is
provided solely to make it easy for subclasses to provide a fast cl ear method on

sublists. In the absence of the removeRange method, subclasses would have to

make do with quadratic performance when the clear method was invoked on

sublists or rewrite the entire subli st mechanism from scratch-not an easy task!



ITEM ]9: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT 97

subclass's state has been deserialized. In the case of c1one, the overriding method
will run before the subclass's clone method has a chance to fix the clone's state.
In either case, a program failure is likely to follow. In the case of c'l one, the failure
can damage the original object as well as the clone. This can happen, for example,
if the overiding method assumes it is modifying the clone's copy of the object's
deep structure, but the copy hasn't been made yet.

Finally, if you decide to implement serializabre in a class designed for
inheritance and the class has a readResolve or wri teRepl ace method, you must
make the readResolve or wri teRepl ace method protected rather than private. If
these methods are private, they will be silently ignored by subclasses. This is one
more case where an implementation detail becomes part of a class's API to permit
inheritance.

By now it should be apparent that designing a class for inheritance requires
great effort and places substantial limitations on the class. This is not a
decision to be undertaken lightly. There are some situations where it is clearly the
right thing to do, such as abstract classes, including skeletal implementations of
interfaces (Item 20). There are other situations where it is clearly the wrong thing
to do, such as immutable classes (Item 17).

But what about ordinary concrete classes? Traditionally, they are neither final
nor designed and documented for subclassing, but this state of affairs is danger-
ous. Each time a change is made in such a class, there is a chance that subclasses
extending the class will break. This is not just a theoretical problem. It is not
uncornmon to receive subclassing-related bug reports after modifying the internals
of a nonfinal concrete class that was not designed and documented for inheritance.

The best solution to this problem is to prohibit subclassing in classes that
are not designed and documented to be safely subclassed. There are two ways
to prohibit subclassing. The easier of the two is to declare the class final. The
alternative is to make all the constructors private or package-private and to add
public static factories in place of the constructors. This alternative, which provides
the flexibility to use subclasses internally, is discussed in Item 17. Either approach
is acceptable.

This advice may be somewhat controversial because many programmers have
grown accustomed to subclassing ordinary concrete classes to add facilities such
as instrumentation, notification, and synchronization or to limit functionality. If a

class implements some interface that captures its essence, such as Set, Li st, or
Map, then you should feel no compunction about prohibiting subclassing. The
wrapper class pattem, described in Item 18, provides a superior alternative to
inheritance for augmenting the functionality.

96 CHAPTER4 CI,ASSESANDINTERFACES

Here's a subclass that overrides the overri deMe method, which is erroneously

invoked by Super's sole constructor:

public final class Sub extends Super {
// Blank fina1, set bY constructor
private final Instant instant;

SubO {
i nstant = Instant. nowO ;

]

//overridingmethodinvokedbysuperc.|assconstructor
@Override public void overrideMeO {

System. out. Pri ntl n(i nstant) ;

]
public static void main(String[] args) {

Sub sub = new SubO;
sub. overri deMeO ;

]
]

You might expect this program to print out the instant twice, but it prints out nul I

the first time because overri deMe is invoked by the Super constructor before the

Sub constructor has a chance to initialize the i nstant field. Note that this program

observes a final field in two different states! Note also that if overrideMe had

invoked any method on i nstant, it would have thrown a Nul I Poi nterExcepti on

when the Super constructor invoked overrideMe. The only reason this program

doesn'tthrow a NullPointerException as it stands is that the println method

tolerates null parameters.

Note that it ls safe to invoke private methods, final methods, and static meth-

ods, none of which are overridable, from a constructor.

The Cloneable and Serializable interfaces present special difficulties

when designing for inheritance. It is generally not a good idea for a class designed

for inheritance to implement either of these interfaces because they place a sub-

stantial burden on programmers who extend the class. There are, however, special

actions that you can take to allow subclasses to implement these interfaces without

mandating that they do so. These actions are described in Item 13 and Item 86'

If you do decide to implement either Cloneable or Serializable in a class

that is designed for inheritance, you should be aware that because the clone and

readObject methods behave a lot like constructors, a similar restriction applies:

neither clone nor readObject may invoke an overridable method, directly or

indirectly. In the case of readobject, the overriding method will run before the



ITEM 19: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT 97

subclass's state has been deserialized. In the case of c1one, the overriding method
will run before the subclass's clone method has a chance to fix the clone's state.
In either case, a program failure is likely to follow. In the case of c1one, the failure
can damage the original object as well as the clone. This can happen, for example,
if the overriding method assumes it is modifying the clone's copy of the object's
deep structure, but the copy hasn't been made yet.

Finally, if you decide to implement serializabre in a class designed for
inheritance and the class has a readResolve or writeReplace method, you must
make the readResol ve or wri teRepl ace method protected rather than private. If
these methods are private, they will be silently ignored by subclasses. This is one
more case where an implementation detail becomes part of a class's API to permit
inheritance.

By now it should be apparent that designing a class for inheritance requires
great effort and places substantial limitations on the class. This is not a
decision to be undertaken lightly. There are some situations where it is clearly the
right thing to do, such as abstract classes, including skeletal implementations of
interfaces (Item 20). There are other situations where it is clearly the wrong thing
to do, such as immutable classes (Item 17).

But what about ordinary concrete classes? Traditionally, they are neither final
nor designed and documented for subclassing, but this state of affairs is danger-
ous. Each time a change is made in such a class, there is a chance that subclasses
extending the class will break. This is not just a theoretical problem. It is not
uncommon to receive subclassing-related bug reports after modifying the internals
of a nonfinal concrete class that was not designed and documented for inheritance.

The best solution to this problem is to prohibit subclassing in classes that
are not designed and documented to be safely subclassed. There are two ways
to prohibit subclassing. The easier of the two is to declare the class final. The
alternative is to make all the constructors private or package-private and to add
public static factories in place of the constructors. This alternative, which provides
the flexibility to use subclasses internally, is discussed in Item 17. Either approach
is acceptable.

This advice may be somewhat controversial because many programmers have
grown accustomed to subclassing ordinary concrete classes to add facilities such
as instrumentation, notification, and synchronization or to limit functionality. If a

class implements some interface that captures its essence, such as set, Li st, or
Map, then you should feel no compunction about prohibiting subclassing. The
wrapper class pattern, described in Item 18, provides a superior alternative to
inheritance for augmenting the functionality.

96 CHAPTER 4 CI-4SSES AND INTERFACES

Here's a subclass that overrides the ove r ri deMe method, which is erroneously

invoked by Super's sole constructor:

publ-ic final class Sub extends Super {
// Blank fina1, set bY constructor
private final Instant instant;

SubO t
i nstant = Instant. nowo ;

]

// Overriding method invoked by superclass constructor
@Override public void overrideMeO {

System. out. Pri ntl n(i nstant) ;

]
public static void main(String[] args) {

Sub sub = hêw SubO;
sub.overrideMeO;

1
J

]

You might expect this program to print out the instant twice, but it prints out nul I

the first time because overri deMe is invoked by the Super constructor before the

Sub constructor has a chance to initialize the i nstant field. Note that this program

observes a final field in two different states! Note also that if overrideMe had

invoked any method on i nstant, it would have thrown a Nul I Poi nterExcept'ion

when the Super constructor invoked overrideMe. The only reason this program

doesn't throw a NullPointerException as it stands is that the println method

tolerates null parameters.

Note that it is safe to invoke private methods, final methods, and static meth-

ods, none of which are overridable, from a constructor.

The Cloneable and Serializable interfaces present special difficulties

when designing for inheritance. It is generally not a good idea for a class designed

for inheritance to implement either of these interfaces because they place a sub-

stantial burden on programmers who extend the class. There are, however, special

actions that you can take to allow subclasses to implement these interfaces without

mandating that they do so. These actions are described in Item 13 and Item 86'

If you do decide to implement either Cl oneabl e or Seri al i zabl e in a class

that is designed for inheritance, you should be aware that because the clone and

readgbject methods behave a lot like constructors, a similar restriction applies:

neither clone nor readobject may invoke an overridable method, directly or

indirectly. In the case of readObject, the overriding method will run before the



ITEM 20: PREFER INTERFACES TO ABSTMCT CIA,SSES 99

Item 20: Prefer interfaces to abstract classes

Java has two mechanisms to define a type that permits multiple implementations:
interfaces and abstract classes. Since the introduction of defoult methods for inter-
faces in Java 8 ULS 9.4.31, both mechanisms allow you to provide implementa-
tions for some instance methods. A major difference is that to implement the type
defined by an abstract class, a class must be a subclass of the abstract class.
Because Java permits only single inheritance, this restriction on abstract classes
severely constrains their use as type definitions. Any class that defines all the
required methods and obeys the general contract is permitted to implement an
interface, regardless of where the class resides in the class hierarchy.

Existing classes can easily be retrofitted to implement a new interface. All
you have to do is to add the required methods, if they don't yet exist, and to add an
implements clause to the class declaration. For example, many existing classes
were retrofitted to implement the comparable, rterab]e, and Autocloseable
interfaces when they were added to the platform. Existing classes cannot, in
general, be retrofitted to extend a new abstract class. If you want to have two
classes extend the same abstract class, you have to place it high up in the type
hierarchy where it is an ancestor of both classes. Unfortunately, this can cause
great collateral damage to the type hierarchy, forcing all descendants of the new
abstract class to subclass it, whether or not it is appropriate.

rnterfaces are ideal for defining mixins. Loosely speaking, a mixin is a type
that a class can implement in addition to its "primary type," to declare that it pro-
vides some optional behavior. For example, Comparab'le is a mixin interface that
allows a class to declare that its instances are ordered with respect to other mutu-
ally comparable objects. Such an interface is called a mixin because it allows the
optional functionality to be "mixed in" to the type's primary functionality.
Abstract classes can't be used to define mixins for the same reason that they can,t
be retrofitted onto existing classes: a class cannot have more than one parent, and
there is no reasonable place in the class hierarchy to insert a mixin.

Interfaces allow for the construction of nonhierarchical type frameworks.
Type hierarchies are great for organizing some things, but other things don't fall
neatly into a rigid hierarchy. For example, suppose we have an interface represent-
ing a singer and another representing a songwriter:

pub'li c i nterface S'inger {
AudioClip sing(Song s) ;

]

98 CHAPTER4 CLASSESANDINTERFACES

If a concrete class does not implement a standard interface, then you may

inconvenience some programmers by prohibiting inheritance. If you feel that you

must allow inheritance from such a class, one reasonable approach is to ensure

that the class never invokes any of its overridable methods and to document this

fact. In other words, eliminate the class's self-use of overridable methods entirely'

In doing so, you'll create a class that is reasonably safe to subclass' Overriding a

method will never affect the behavior of any other method'

You can eliminate a class's self-use of overridable methods mechanically,

without changing its behavior. Move the body of each overridable method to a

private "helper method" and have each overridable method invoke its private

tretper method. Then replace each self-use of an overridable method with a direct

invocation of the overridable method's private helper method.

In summary, designing a class for inheritance is hard work. You must document

all of its self-use patterns, and once you've documented them, you must commit to

them for the life of the class. If you fail to do this, subclasses may become depen-

dent on implementation details of the superclass and may break if the implementa-

tion of the superclass changes. To allow others to write fficient subclasses, you may

also have to export one of more protected methods' Unless you know there is a real

need for subclasses, you are probably better off prohibiting inheritance by declaring

your class final or ensuring that there are no accessible consffuctors.


