ITEM 18: FAVOR COMPOSITION OVER INHERITANCE

Item 18: Favor composition over inheritance

Inheritance is a powerful way to achieve code reuse, but it is not always the best
tool for the job. Used inappropriately, it leads to fragile software. It is safe to use
inheritance within a package, where the subclass and the superclass implementa-
tions are under the control of the same programmers. It is also safe to use inheri-
tance when extending classes specifically designed and documented for extension
(Item 19). Inheriting from ordinary concrete classes across package boundaries,
however, is dangerous. As a reminder, this book uses the word “inheritance” to
mean implementation inheritance (When one class extends another). The problems
discussed in this item do not apply to interface inheritance (when a class imple-
ments an interface or when one interface extends another).

Unlike method invocation, inheritance violates encapsulation [Snyder86].
In other words, a subclass depends on the implementation details of its superclass
for its proper function. The superclass’s implementation may change from release
to release, and if it does, the subclass may break, even though its code has not
been touched. As a consequence, a subclass must evolve in tandem with its
superclass, unless the superclass’s authors have designed and documented it
specifically for the purpose of being extended.

To make this concrete, let’s suppose we have a program that uses a HashSet.
To tune the performance of our program, we need to query the HashSet as to how
many elements have been added since it was created (not to be confused with its
current size, which goes down when an element is removed). To provide this
functionality, we write a HashSet variant that keeps count of the number of
attempted element insertions and exports an accessor for this count. The HashSet
class contains two methods capable of adding elements, add and addA11, so we
override both of these methods:

// Broken - Inappropriate use of inheritance!

public class InstrumentedHashSet<E> extends HashSet<E> {
// The number of attempted element insertions
private int addCount = 0;

public InstrumentedHashSet() {
}

public InstrumentedHashSet(int initCap, float loadFactor) {
super(initCap, loadFactor);
}

87




88

CHAPTER 4 CLASSES AND INTERFACES

@0Override public boolean add(E e) {
addCount++;
return super.add(e);
}
@verride public boolean addA11(Collection<? extends E> ¢) {
addCount += c.size();
return super.addA11(c);

}

public int getAddCount() {
return addCount;

}

}

This class looks reasonable, but it doesn’t work. Suppose we create an instance
and add three elements using the addA11 method. Incidentally, note that we create
a list using the static factory method List.of, which was added in Java 9; if you’re
using an earlier release, use Arrays.asList instead:

InstrumentedHashSet<String> s = new InstrumentedHashSet<>();
s.addAT1(List.of("Snap™, "Crackle™, "Pop™));

We would expect the getAddCount method to return three at this point, but it
returns six. What went wrong? Internally, HashSet’s addA11 method is imple-
mented on top of its add method, although HashSet, quite reasonably, does not
document this implementation detail. The addA11 method in Instrumented-
HashSet added three to addCount and then invoked HashSet’s addA11 implemen-
tation using super.addA11. This in turn invoked the add method, as overridden in
InstrumentedHashSet, once for each element. Each of these three invocations
added one more to addCount, for a total increase of six: each element added with
the addA11 method is double-counted.

We could “fix” the subclass by eliminating its override of the addA11 method.
While the resulting class would work, it would depend for its proper function on
the fact that HashSet’s addA11 method is implemented on top of its add method.
This “self-use” is an implementation detail, not guaranteed to hold in all imple-
mentations of the Java platform and subject to change from release to release.
Therefore, the resulting InstrumentedHashSet class would be fragile.

It would be slightly better to override the addA11 method to iterate over the
specified collection, calling the add method once for each element. This would
guarantee the correct result whether or not HashSet’s addA11 method were
implemented atop its add method because HashSet’s addA11 implementation
would no longer be invoked. This technique, however, does not solve all our
problems. It amounts to reimplementing superclass methods that may or may not



ITEM 18: FAVOR COMPOSITION OVER INHERITANCE

result in self-use, which is difficult, time-consuming, error-prone, and may reduce
performance. Additionally, it isn’t always possible because some methods cannot
be implemented without access to private fields inaccessible to the subclass.

A related cause of fragility in subclasses is that their superclass can acquire
new methods in subsequent releases. Suppose a program depends for its security
on the fact that all elements inserted into some collection satisfy some predicate.
This can be guaranteed by subclassing the collection and overriding each method
capable of adding an element to ensure that the predicate is satisfied before adding
the element. This works fine until a new method capable of inserting an element is
added to the superclass in a subsequent release. Once this happens, it becomes
possible to add an “illegal” element merely by invoking the new method, which is
not overridden in the subclass. This is not a purely theoretical problem. Several
security holes of this nature had to be fixed when Hashtable and Vector were ret-
rofitted to participate in the Collections Framework.

Both of these problems stem from overriding methods. You might think that it
is safe to extend a class if you merely add new methods and refrain from
overriding existing methods. While this sort of extension is much safer, it is not
without risk. If the superclass acquires a new method in a subsequent release and
you have the bad luck to have given the subclass a method with the same signature
and a different return type, your subclass will no longer compile [JLS, 8.4.8.3]. If
you’ve given the subclass a method with the same signature and return type as the
new superclass method, then you’re now overriding it, so you’re subject to the
problems described earlier. Furthermore, it is doubtful that your method will
fulfill the contract of the new superclass method, because that contract had not yet
been written when you wrote the subclass method.

Luckily, there is a way to avoid all of the problems described above. Instead of
extending an existing class, give your new class a private field that references an
instance of the existing class. This design is called composition because the exist-
ing class becomes a component of the new one. Each instance method in the new
class invokes the corresponding method on the contained instance of the existing
class and returns the results. This is known as forwarding, and the methods in the
new class are known as forwarding methods. The resulting class will be rock
solid, with no dependencies on the implementation details of the existing class.
Even adding new methods to the existing class will have no impact on the new
class. To make this concrete, here’s a replacement for InstrumentedHashSet that
uses the composition-and-forwarding approach. Note that the implementation is
broken into two pieces, the class itself and a reusable forwarding class, which
contains all of the forwarding methods and nothing else:

89




90 CHAPTER 4 (CLASSES AND INTERFACES

// Wrapper class - uses composition in place of inheritance
public class InstrumentedSet<E> extends ForwardingSet<E> {
private int addCount = 0;

public InstrumentedSet(Set<E> s) {

super(s);

}

@Override public boolean add(E e) {
addCount++;
return super.add(e);

1

@0verride public boolean addA11(Collection<? extends E> ) {
addCount += c.size(Q);
return super.addA11(c);

}

public int getAddCount() {
return addCount;

1

}

// Reusable forwarding class

public class ForwardingSet<E> implements Set<E> {
private final Set<E> s;
public ForwardingSet(Set<E> s) { this.s =s; }

@0verride public boolean equals(Object o)

{ return s.equals(o);
@verride public int hashCode() { return s.hashCode();
@Override public String toString() { return s.toStringQ;

public void clear() { s.clearQ); }
public boolean contains(Object o) { return s.contains(o); 1}
public boolean isEmpty() { return s.isEmpty(Q); }
public int size() { return s.size(); }
public Iterator<E> iterator() { return s.iterator(); 1}
pubTlic boolean add(E e) { return s.add(e); }
public boolean remove(Object o) { return s.remove(0); }
public boolean containsAl1(Collection<?> c)
{ return s.containsA11(c); }
public boolean addA11(Collection<? extends E> c)
{ return s.addA11(c); }
public boolean removeAll(Collection<?> c)
{ return s.removeAll1(c); }
public bootlean retainAl1(Collection<?> c)
{ return s.retainAl1(c); }
pubTlic Object[] toArray() { return s.toArray(Q); 1}
public <T> T[] toArray(T[] a) { return s.toArray(a); }
}
}
}



ITEM 18: FAVOR COMPOSITION OVER INHERITANCE

The design of the InstrumentedSet class is enabled by the existence of the
Set interface, which captures the functionality of the HashSet class. Besides
being robust, this design is extremely flexible. The InstrumentedSet class imple-
ments the Set interface and has a single constructor whose argument is also of
type Set. In essence, the class transforms one Set into another, adding the instru-
mentation functionality. Unlike the inheritance-based approach, which works only
for a single concrete class and requires a separate constructor for each supported
constructor in the superclass, the wrapper class can be used to instrument any Set
implementation and will work in conjunction with any preexisting constructor:

Set<Instant> times = new InstrumentedSet<>(new TreeSet<>(cmp));
Set<E> s = new InstrumentedSet<>(new HashSet<>(INIT_CAPACITY));

The InstrumentedSet class can even be used to temporarily instrument a set
instance that has already been used without instrumentation:

static void walk(Set<Dog> dogs) {
InstrumentedSet<Dog> iDogs = new InstrumentedSet<>(dogs);
... // Within this method use iDogs instead of dogs

}

The InstrumentedSet class is known as a wrapper class because each
InstrumentedSet instance contains (“wraps”) another Set instance. This is also
known as the Decorator pattern [Gamma95] because the InstrumentedSet class
“decorates” a set by adding instrumentation. Sometimes the combination of com-
position and forwarding is loosely referred to as delegation. Technically it’s not
delegation unless the wrapper object passes itself to the wrapped object [Lieber-
man86; Gamma95].

The disadvantages of wrapper classes are few. One caveat is that wrapper
classes are not suited for use in callback frameworks, wherein objects pass self-
references to other objects for subsequent invocations (“callbacks”). Because a
wrapped object doesn’t know of its wrapper, it passes a reference to itself (this)
and callbacks elude the wrapper. This is known as the SELF problem
[Lieberman86]. Some people worry about the performance impact of forwarding
method invocations or the memory footprint impact of wrapper objects. Neither
turn out to have much impact in practice. It’s tedious to write forwarding methods,
but you have to write the reusable forwarding class for each interface only once,
and forwarding classes may be provided for you. For example, Guava provides
forwarding classes for all of the collection interfaces [Guava].

91



92

CHAPTER 4 CLASSES AND INTERFACES

Inheritance is appropriate only in circumstances where the subclass really is a
subtype of the superclass. In other words, a class B should extend a class A only if
an “is-a” relationship exists between the two classes. If you are tempted to have a
class B extend a class A, ask yourself the question: Is every B really an A? If you
cannot truthfully answer yes to this question, B should not extend A. If the answer
is no, it is often the case that B should contain a private instance of A and expose a
different APIL: A is not an essential part of B, merely a detail of its implementation.

There are a number of obvious violations of this principle in the Java platform
libraries. For example, a stack is not a vector, so Stack should not extend Vector.
Similarly, a property list is not a hash table, so Properties should not extend
Hashtable. In both cases, composition would have been preferable.

If you use inheritance where composition is appropriate, you needlessly
expose implementation details. The resulting API ties you to the original imple-
mentation, forever limiting the performance of your class. More seriously, by
exposing the internals you let clients access them directly. At the very least, it can
lead to confusing semantics. For example, if p refers to a Prope rties instance,
then p.getProperty(key) may yield different results from p. get(key): the for-
mer method takes defaults into account, while the latter method, which is inher-
ited from Hashtable, does not. Most seriously, the client may be able to corrupt
invariants of the subclass by modifying the superclass directly. In the case of
Properties, the designers intended that only strings be allowed as keys and val-
ues, but direct access to the underlying Hashtable allows this invariant to be vio-
lated. Once violated, it is no longer possible to use other parts of the Prope rties
API (1oad and store). By the time this problem was discovered, it was too late to
correct it because clients depended on the use of non-string keys and values.

There is one last set of questions you should ask yourself before deciding to
use inheritance in place of composition. Does the class that you contemplate
extending have any flaws in its API? If so, are you comfortable propagating those
flaws into your class’s API? Inheritance propagates any flaws in the superclass’s
API while composition lets you design a new API that hides these flaws.

To summarize, inheritance is powerful, but it is problematic because it
violates encapsulation. It is appropriate only when a genuine subtype relationship
exists between the subclass and the superclass. Even then, inheritance may lead to
fragility if the subclass is in a different package from the superclass and the
superclass is not designed for inheritance. To avoid this fragility, use composition
and forwarding instead of inheritance, especially if an appropriate interface to
implement a wrapper class exists. Not only are wrapper classes more robust than
subclasses, they are also more powerful.



