
86 CHAPTER 4 CLASSES AND INTERFACES

Objectlnputstream. readUnshared methods, even if the default serialized form
is acceptable. Otherwise an attacker could create a mutable instance of your class.

This topic is covered in detail in Item 88.

To summarize, resist the urge to write a setter for every getter. Classes should
be immutable unless thereos a very good reason to make them mutable.
Immutable classes provide many advantages, and their only disadvantage is the

potential for performance problems under certain circumstances. You should

always make small value objects, such as PhoneNumber and Compl ex, immutable.
(There are several classes in the Java platform libraries, such as java. uti I . Date

and j ava. awt . Poi nt, that should have been immutable but aren't.) You should

seriously consider making larger value objects, such as String and Biglnteger,
immutable as well. You should provide a public mutable companion class for your

immutable class only once you've confirmed that it's necessary to achieve satis-

factory performance (Item 67).

There are some classes for which immutability is impractical. If a class

cannot be made immutable,limit its mutability as much as possible. Reducing

the number of states in which an object can exist makes it easier to reason about

the object and reduces the likelihood of errors. Therefore, make every field final
unless there is a compelling reason to make it nonfinal. Combining the advice of
this item with that of Item 15, your natural inclination should be to declare every

field private final unless there's a good reason to do otherwise.

Constructors should create fully initialized objects with all of their invari-
ants established. Don't provide a public initialization method separate from the

constructor or static factory unless there is a compelling reason to do so. Similarly,

don't provide a "reinitialize" method that enables an object to be reused as if it
had been constructed with a different initial state. Such methods generally provide

little if any performance benefit at the expense of increased complexity.
The CountDownLatch class exemplifies these principles. It is mutable, but its

state space is kept intentionally small. You create an instance, use it once, and it's
done: once the countdown latch's count has reached zero, you may not reuse it.

A final note should be added concerning the Compl ex class in this item. This

example was meant only to illustrate immutability. It is not an industrial-strength

complex number implementation. It uses the standard formulas for complex

multiplication and division, which are not correctly rounded and provide poor

semantics for complex NaNs and infinities [Kahan9l, Smith62, Thomas94].

ITEM 18: FAVOR COMPOSITION OVER INHERITANCE 81

Item L8: Favor composition over inheritance

Inheritance is a powerful way to achieve code reuse, but it is not always the best

tool for the job. Used inappropriately, it leads to fragile software. It is safe to use

inheritance within a package, where the subclass and the superclass implementa-

tions are under the control of the same programmers. It is also safe to use inheri-
tance when extending classes specifically designed and documented for extension
(Item 19). Inheriting from ordinary concrete classes across package boundaries,

howeveq is dangerous. As a reminder, this book uses the word "inheritance" to
mean implementation inheritance (when one class extends another). The problems

discussed in this item do not apply to interface inheritance (when a class imple-
ments an interface or when one interface extends another).

Unlike method invocation, inheritance violates encapsulation [Snyder86].
In other words, a subclass depends on the implementation details of its superclass

for its proper function. The superclass's implementation may change from release

to release, and if it does, the subclass may break, even though its code has not
been touched. As a consequence, a subclass must evolve in tandem with its
superclass, unless the superclass's authors have designed and documented it
specifically for the purpose of being extended.

To make this concrete, let's suppose we have a program that uses a HashSet.

To tune the performance of our program, we need to query the HashSet as to how
many elements have been added since it was created (not to be confused with its
current size, which goes down when an element is removed). To provide this
functionality, we write a HashSet variant that keeps count of the number of
attempted element insertions and exports an accessor for this count. The HashSet

class contains two methods capable of adding elements, add and addAl I, so we

override both of these methods:

// Broken - Inappropriate use of inheritancel
public class InstrumentedHashSet<E> extends HashSet<E> {

// the number of attempted element insertions
private int addCount = 0i

public InstrumentedHashSetO {
]

public InstrumentedHashSet(int initCap, float loadFactor) {
super(i ni tCap, 1 oadFactor) ;

]

r I
'l

88 CHAPTER 4 CLASSES AND INTERFACES

@Override public boolean add(E e) {
addCount++;
return super.add(e);

]
@Override public boolean addAll (Collection<? extends E> c) {

addCount += c.sizeO;
return super.addAll (c) ;

]
public int getAddCountO {

return addCount;
]

i
This class looks reasonable, but it doesn't work. Suppose we create an instance

and add three elements using the addAl I method. Incidentally, note that we create

a list using the static factory method Li st. of, which was added in Java 9; if you're

using an eadier release, use Arrays. asLi st instead:

InstrumentedHashSet<String> s = nêw InstrumentedHashSet<>O ;

s.addAlI (List.of("Snap", "Crackle", "Pop")) ;

We would expect the getAddCount method to return three at this point, but it
returns six. What went wrong? Internally, HashSet's addAl I method is imple-

mented on top of its add method, although HashSet, quite reasonably, does not

document this implementation detail. The addAll method in Instrumented-
HashSet added three to addCount and then invoked HashSet's addAl I implemen-

tation using super. addAl l. This in turn invoked the add method, as overridden in

InstrumentedHashSet, once for each element. Each of these three invocations

added one more to addCount, for a total increase of six: each element added with

the addAl I method is double-counted.

We could "fix" the subclass by eliminating its override of the addAl l method.

While the resulting class would work, it would depend for its propel function on

the fact that HashSet's addAl I method is implemented on top of its add method.

This "self-use" is an implementation detail, not guaranteed to hold in all imple-

mentations of the Java platform and subject to change from release to release.

Therefore, the resulting InstrumentedHashSet class would be fragile.

It would be slightly better to ovemide the addAl I method to iterate over the

specified collection, calling the add method once for each element. This would

guarantee the correct result whether or not HashSet's addAl I method were

implemented atop its add method because HashSet's addAl I implementation

would no longer be invoked. This technique, however, does not solve all our

problems. It amounts to reimplementing superclass methods that may or may not

-t

ITEM t8: FAVORCOMPOSITIONOVERINHERITANCE 89

result in self-use, which is difficult, time-consuming, error-prone, and may reduce
performance. Additionally, it isn't always possible because some methods cannot
be implemented without access to private fields inaccessible to the subclass.

A related cause of fragility in subclasses is that their superclass can acquire
new methods in subsequent releases. Suppose a program depends for its security
on the fact that all elements inserted into some collection satisfy some predicate.
This can be guaranteed by subclassing the collection and overriding each method
capable of adding an element to ensure that the predicate is satisfied before adding
the element. This works fine until a new method capable of inserting an element is
added to the superclass in a subsequent release. Once this happens, it becomes
possible to add an "illegal" element merely by invoking the new method, which is
not overridden in the subclass. This is not a purely theoretical problem. Several
security holes of this nature had to be fixed when Hashtabl e and Vector were ret-
rofitted to participate in the Collections Framework.

Both of these problems stem from overriding methods. You might think that it
is safe to extend a class if you merely add new methods and refrain from
overiding existing methods. While this sort of extension is much safer, it is not
without risk. If the superclass acquires a new method in a subsequent release and
you have the bad luck to have given the subclass a method with the same signature
and a different return type, your subclass will no longer compile ULS, 8.4.8.31. If
you've given the subclass a method with the same signature and return type as the
new superclass method, then you're now overriding it, so you're subject to the
problems described earlier. Furthermore, it is doubtful that your method will
fulfill the contract of the new superclass method, because that contract had not yet
been written when you wrote the subclass method.

Luckily, there is a way to avoid all of the problems described above. Instead of
extending an existing class, give your new class a private field that references an
instance of the existing class. This design is called composition because the exist-
ing class becomes a component of the new one. Each instance method in the new
class invokes the corresponding method on the contained instance of the existing
class and returns the results. This is known as forwarding, and the methods in the
new class are known as forwarding methods. The resulting class will be rock
solid, with no dependencies on the implementation details of the existing class.
Even adding new methods to the existing class will have no impact on the new
class. To make this concrete, here's a replacement for InstrumentedHashSet that
uses the composition-and-forwarding approach. Note that the implementation is
broken into two pieces, the class itself and a reusable forwarding c/ass, which
contains all of the forwarding methods and nothing else:

88 CHAPTER 4 CIASSES AND INTERFACES

@Override public boolean add(E e) {
addCount++;
return super.add(e);

]
@Override public boolean addAll (Collection<? extends E> c) {

addCount += c.sizeO;
return super.addAll (c) ;

i
publ i c 'i nt getAddCount O {

return addCount;
]

]

This class looks reasonable, but it doesn't work. Suppose we create an instance

and add three elements using the addAl I method. Incidentally, note that we create

a list using the static factory method Li st. of, which was added in Java 9; if you're

using an earlier release, use Arrays, asLi st instead:

InstrumentedHashSet<String> s = r]êw InstrumentedHashSet<>O ;

s.addAll (List.of("Snap", "Crack1e", "Pop")) ;

We would expect the getAddCount method to return three at this point, but it
returns six. What went wrong? Internally, HashSet's addAll method is imple-

mented on top of its add method, although HashSet, quite reasonably, does not

document this implementation detail. The addAll method in Instrumented-
HashSet added three to addCount and then invoked HashSet's addAl I implemen-

tation using super. addAl l. This in turn invoked the add method, as overridden in

InstrumentedHashSet, once for each element. Each of these three invocations

added one more to addCount, for a total increase of six: each element added with

the addAl I method is double-counted.

Vy'e could "fix" the subclass by eliminating its override of the addAl I method.

While the resulting class would work, it would depend for its proper function on

the fact that HashSet's addAl I method is implemented on top of its add method.

This "self-use" is an implementation detail, not guaranteed to hold in all imple-

mentations of the Java platform and subject to change from release to release.

Therefore, the resulting InstrumentedHashSet class would be fragile.

It would be slightly better to override the addAl I method to iterate over the

specified collection, calling the add method once for each element. This would

guarantee the correct result whether or not HashSet's addAl 1 method were

implemented atop its add method because HashSet's addAll implementation

would no longer be invoked. This technique, however, does not solve all our

problems. It amounts to reimplementing superclass methods that may or may not

ITEM 18: FAVOR COMPOSITION OVER INHERITANCE 89

result in self-use, which is difficult, time-consuming, error-prone, and may reduce
performance. Additionally, it isn't always possible because some methods cannot
be implemented without access to private fields inaccessible to the subclass.

A related cause of fragility in subclasses is that their superclass can acquire
new methods in subsequent releases. Suppose a program depends for its security
on the fact that all elements inserted into some collection satisfy some predicate.
This can be guaranteed by subclassing the collection and overriding each method
capable of adding an element to ensure that the predicate is satisfied before adding
the element. This works fine until a new method capable of inserting an element is
added to the superclass in a subsequent release. Once this happens, it becomes
possible to add an "illegal" element merely by invoking the new method, which is
not overridden in the subclass. This is not a purely theoretical problem. Several
security holes of this nature had to be fixed when Hashtabl e and Vector were ret-
rofitted to participate in the Collections Framework.

Both of these problems stem from overriding methods. You might think that it
is safe to extend a class if you merely add new methods and refrain from
overriding existing methods. While this sort of extension is much safer, it is not
without risk. If the superclass acquires a new method in a subsequent release and
you have the bad luck to have given the subclass a method with the same signature
and a different return type, your subclass will no longer compile [JLS, 8.4.8.3]. If
you've given the subclass a method with the same signature and return type as the
new superclass method, then you're now overriding it, so you're subject to the
problems described earlier. Furthermore, it is doubtful that your method will
fulfill the contract of the new superclass method, because that contract had not yet
been written when you wrote the subclass method.

Luckily, there is a way to avoid all of the problems described above. Instead of
extending an existing class, give your new class a private field that references an
instance of the existing class. This design is called composition because the exist-
ing class becomes a component of the new one. Each instance method in the new
class invokes the corresponding method on the contained instance of the existing
class and retums the results. This is known as forwarding, and the methods in the
new class are known as forwarding methods. The resulting class will be rock
solid, with no dependencies on the implementation details of the existing class.
Even adding new methods to the existing class will have no impact on the new
class. To make this concrete, here's a replacement for InstrumentedHashSet that
uses the composition-and-forwarding approach. Note that the implementation is
broken into two pieces, the class itself and a reusable forwarding class, which
contains all of the forwarding methods and nothing else:

ITEM 18: FAVOR COMPOSITION OVER INHERITANCE 9l

The design of the Instrumentedset class is enabled by the existence of the
Set interface, which captures the functionality of the HashSet class. Besides
being robust, this design is extremely flexible. The f nstrumentedSet class imple-
ments the Set interface and has a single constructor whose argument is also of
type Set. In essence, the class transforms one Set into another, adding the instru-
mentation functionality. Unlike the inheritance-based approach, which works only
for a single concrete class and requires a separate constructor for each supported
constructor in the superclass, the wrapper class can be used to instrument any Set
implementation and will work in conjunction with any preexisting constructor:

Set<Instant> times = fl€w InstrumentedSet+(new TreeSet<>(cmp)) ;
Set<E> s = hêw InstrumentedSet<>(new HashSet<>(INIT_CAPACITY)) ;

The InstrumentedSet class can even be used to temporarily instrument a set

instance that has already been used without instrumentation:

static void walk(Set<Dog> dogs) {
InstrumentedSet<Dog>'iDogs = new fnstrumentedSet<>(dogs);
... // Within this method use iDogs instead of dogs

]

The InstrumentedSet class is known as a wrapper class because each
InstrumentedSet instance contains (o'wraps") another Set instance. This is also
known as the Decorator pattern [Gamma95] because the InstrumentedSet class
"decorates" a set by adding instrumentation. Sometimes the combination of com-
position and forwarding is loosely referred to as delegation. Technically it's not
delegation unless the wrapper object passes itself to the wrapped object [Lieber-
man86; Gamma95l.

The disadvantages of wrapper classes are few. One caveat is that wrapper
classes are not suited for use in callback frameworks, wherein objects pass self-
references to other objects for subsequent invocations ("callbacks"). Because a

wrapped object doesn't know of its wrapper, it passes a reference to itself (thi s)
and callbacks elude the wrapper. This is known as the SELF problem

[Lieberman86]. Some people worry about the performance impact of forwarding
method invocations or the memory footprint impact of wrapper objects. Neither
turn out to have much impact in practice. It's tedious to write forwarding methods,
but you have to write the reusable forwarding class for each interface only once,
and forwarding classes may be provided for you. For example, Guava provides
forwarding classes for all of the collection interfaces [Guava].

90 CHAPTER4 CLASSESAND INTERFACES

// Wrapper c'lass - uses composition in place of inheritance
pub'l'ic class InstrumentedSet<E> extends ForwardingSet<E> {

private int addCount = 0;

pubf ic InstrumentedSet(Set<b s) {
super(s);

]

@Override pubf ic boolean add(E e) {
addCount++;
return super. add(e) ;

]
@Override pub'lic boolean addAll(Collection<? extends E> c) {

addCount += c.sizeO;
return super.addAll (c) ;

]
public int getAddCountO {

return addCount;
]

]

// Reusable forwarding class
public class ForwardingSet<E> implements Set<b {

private final Set<E> s;
pubfic ForwardingSet(Set<b s) { this.s = s; }
pub'lic void clearO { s.clearO;
pubf ic boolean contains(Object o) { return s.contains(o);
pub'lic boolean isEmptyO { return s.isEmptyO;
pub'lic int sizeO { return s.sizeO;
pubf ic lterator<E> 'iteratorO { return s.iteratorO;
public boolean add(E e) { return s.add(e);
pubfic boolean remove(Object o) { return s.remove(o);
pub'l i c bool ean contai nsAl I (Col I ecti on<?> c)

{ retu rn s ' contai nsAl I (c) ;

pub'lic boolean addAll(Collection<? extends E> c)
{ return s. addAl 1 (c) ;

publ i c bool ean removeAl I (Col I ecti on<?> c)
{ return s.removeAll(c);

publ i c bool ean retai nAl I (Col I ecti on<?> c)
{ return s. retai nAl I (c) ;

public Objectl] toArrayO { return s.toArrayO;
public <T> T[] toArray(Tl] a) { return s.toArray(a);
@Override public boolean equals(Object o)

{ retu rn s . equal s (o) ;

@Override pub'lic int hashCodeO { return s.hashCodeO;
@Override pubfic String tostrinSO { return s.tostringO;

]
]
]
]
]
]
]

i
]

i
i
]
]

]
]
]

]

90 CHAPTER4 CLASSESAND INTERFACES

// Nrapper class - uses composition 'in place of inheritance
pubf ic class InstrumentedSet<E> extends ForwardingSet<E> {

private int addCount = 0;

pubf ic InstrumentedSet(Set<E> s) {
super(s);

]

@Override pub'lic boolean add(E e) {
addCount++;
return super.add(e);

]
@Override public boolean addAll(Collection<? extends E> c) {

addCount += c.sizeO;
return super.addAll (c) ;

]
pubiic int getAddCountO {

return addCount;
]

]

// Reusable forwarding c'lass
pubf ic class Forwardingset<E> implements Set<E> {

private final Set<E> s;
public Forwardingset(Set<E> s) { this.s = si }

public void clearO { s.clearO;
public boolean contains(0bject o) { return s.contains(o);
public boolean isEmptyO { return s.isEmptyO;
public int sizeO { return s.sizeO;
pub'l 'i c lterator<E> iteratorO { return s.iteratorO;
public boolean add(E e) { return s'add(e);
publ i c bool ean remove(Object o) { return s. remove(o) ;

pub'lic boolean containsAll (Collection<?> c)
{ return s. contai nsAl I (c) ;

public boolean addAll(Collection<? extends E> c)
{ return s. addAl I (c) ;

public boolean removeAll (Collection<?> c)
{ return s. removeAl I (c) ;

pubf i c bool ean retai nAl I (Col I ecti on<?> c)
{ return s.retainAll (c) ;

public Objectl] toArrayO { return s.toArrayO;
public <T> T[] toArray(Tl] a) { return s'toArray(a);
@Override public boolean equals(Object o)

{ return s.equals(o);
@Override pub'lic int hashCodeO { return s.hashCodeO;
@0verride public String tostrinSO i return s,toStringO;

]
]
]
i
]
]
]

]

]

]

]
]
]

]
]
]

i

ITEM I8: FAVOR COMPOSTTION OVER INHERITANCE 9l

The design of the InstrumentedSet class is enabled by the existence of the
Set interface, which captures the functionality of the HashSet class. Besides
being robust, this design is extremely flexible. The f nstrumentedSet class imple-
ments the Set interface and has a single constructor whose argument is also of
type Set. In essence, the class transforms one Set into another, adding the instru-
mentation functionality. Unlike the inheritance-based approach, which works only
for a single concrete class and requires a separate constructor for each supported
constructor in the superclass, the wrapper class can be used to instrument any Set
implementation and will work in conjunction with any preexisting constructor:

Set<Instant> times = nêw InstrumentedSet<>(new TreeSet<>(cmp));
Set<E> s = hêw InstrumentedSet+(new HashSet<>(INIT_CAPACITY));

The InstrumentedSet class can even be used to temporarily instrument a set

instance that has already been used without instrumentation:

static void walk(Set<Dog> dogs) {
InstrumentedSet<Dog> iDogs : new InstrumentedSet<>(dogs) ;... // Within this method use iDogs instead of dogs

i

The InstrumentedSet class is known as a wropper class because each
InstrumentedSet instance contains ("wraps") another Set instance. This is also
known as the Decorotor patteffr [Gamma95] because the InstrumentedSet class
"decorates" a set by adding instrumentation. Sometimes the combination of com-
position and forwarding is loosely referred to as delegation. Technically it's not
delegation unless the wrapper object passes itself to the wrapped object [Lieber-
man86;Gamma95l.

The disadvantages of wrapper classes are few. One caveat is that wrapper
classes are not suited for use in callback frameworks, wherein objects pass self-
references to other objects for subsequent invocations ("callbacks"). Because a
wrapped object doesn't know of its wrapper, it passes a reference to itself (thi s)
and callbacks elude the wrapper. This is known as the SELF problem

[LiebermanS6]. Some people worry about the performance impact of forwarding
method invocations or the memory footprint impact of wrapper objects. Neither
turn out to have much impact in practice. It's tedious to write forwarding methods,
but you have to write the reusable forwarding class for each interface only once,
and forwarding classes may be provided for you. For example, Guava provides
forwarding classes for all of the collection interfaces [Guava].

ITEM 19: DESIGN AND DOCUMENT FOR INHERITANCE OR ELSE PROHIBIT IT 93

rtem 1,9: Design and document for inheritance or else prohibit it

Item 18 alerted you to the dangers of subclassing a "foreign" class that was not
designed and documented for inheritance. So what does it mean for a class to be
designed and documented for inheritance?

First, the class must document precisely the effects of overriding any method.
In other words, the class must document its self-use of overridable methods.
For each public or protected method, the documentation must indicate which
overridable methods the method invokes, in what sequence, and how the results of
each invocation affect subsequent processing. (By overuidable, we mean nonfinal
and either public or protected.) More generally, a class must document any
circumstances under which it might invoke an overridable method. For example,
invocations might come from background threads or static initializers.

A method that invokes overridable methods contains a description of these
invocations at the end of its documentation comment. The description is in a

special section of the specification, labeled "Implementation Requirements,"
which is generated by the Javadoc tag @i mp1 Spec. This section describes the inner
workings of the method. Here's an example, copied from the specification for
j ava. uti I . Abst ractCol I ecti on:

public boolean remove(Object o)

Removes a single instance of the specified element from this collection, if it
is present (optional operation). More formally, removes an element e such
that Objects.equals(o, e), if this collection contains one or more such
elements. Returns true if this collection contained the specified element (or
equivalently, if this collection changed as a result of the call).

Implementation Requirements: This implementation iterates over the col-
lection looking for the specified element. If it finds the element, it removes
the element from the collection using the iterator's remove method. Note that
this implementation throws an unsupportedOperationException if the
iterator returned by this collection's iterator method does not implement
the remove method and this collection contains the specified object.

This documentation leaves no doubt that overriding the i terator method will
affect the behavior of the remove method. It also describes exactly how the
behavior of the rterator returned by the iterator method will affect the
behavior of the remove method. Contrast this to the situation in Item 18, where the
programmer subclassing Hashset simply could not say whether overriding the
add method would affect the behavior of the addAl I method.

92 CHAPTER4 CLASSESANDINTERFACES

Inheritance is appropriate only in circumstances where the subclass really is a

subtypeofthe supeiclass. In other words, a class B should extend a classA only if
an "is-a" relationship exists between the two classes. If you are tempted to have a

class B extend a class A, ask yourself the question: Is every B really an A? If you

cannot truthfully answef yes to this question, B should not extend A' If the answer

is no, it is often the case that B should contain a private instance ofA and expose a

different API: A is not an essential part of B,merely a detail of its implementation'

There are a number of obvious violations of this principle in the Java platform

libraries. For example, a stack is not a vector, so Stack should not extend Vector'

Similarly, a property list is not a hash table, so Properties should not extend

Hashtabl e. In both cases, composition would have been preferable'

Ifyouuseinheritancewherecompositionisappropriate,youneedlessly
expose implementation details. The resulting API ties you to the original imple-

mentation, forever limiting the performance of your class. More seriously, by

exposing the internals you let clients access them directly' At the very least, it can

lead to confusing semantics. For example, if p refers to a Properties instance,

then p.getproperty(key) may yield different results from p.get(key): the for-

mer method takes defaults into account, while the latter method, which is inher-

ited from Hashtable, does not. Most seriously, the client may be able to corrupt

invariants of the subclass by modifying the superclass directly' In the case of

properti es, the designers intended that only strings be allowed as keys and val-

ues, but direct access to the underlying Hashtabl e allows this invariant to be vio-

lated. Once violated, it is no longer possible to use other parts. of the Properti es

API (1oad and store). By the time this problem was discovered, it was too late to

correct it because clients depended on the use of non-string keys and values.

There is one last set of questions you should ask yourself before deciding to

use inheritance in place of composition. Does the class that you contemplate

extending have any flaws in its API? If so, are you comfortable propagating those

flaws into your class's API? Inheritance pfopagates any flaws in the superclass's

API, while composition lets you design a new API that hides these flaws.

To summarize, inheritance is powerful, but it is problematic because it

violates encapsulation. It is appropriate only when a genuine subtype relationship

exists between the subclass and the superclass. Even then, inheritance may lead to

fragility if the subclass is in a different package from the superclass and the

superclass is not designed for inheritance. To avoid this fragility, use composition

and forwarding instead of inheritance, especially if an appropriate interface to

implement a wrapper class exists. Not only are wrapper classes more robust than

subclasses, they are also more powerful'

