26

CHAPTER 2 CREATING AND DESTROYING OBJECTS ‘I

Item 7: Eliminate obsolete object references

If you switched from a language with manual memory management, such as C or
C++, to a garbage-collected language such as Java, your job as a programmer was
made much easier by the fact that your objects are automatically reclaimed when
you’re through with them. It seems almost like magic when you first experience it.
It can easily lead to the impression that you don’t have to think about memory
management, but this isn’t quite true.

Consider the following simple stack implementation:

// Can you spot the "memory Jleak"?
public class Stack {
private Object[] elements;
private int size = 0;
private static final int DEFAULT_INITIAL_CAPACITY = 16;

public Stack() {
elements = new Object[DEFAULT_INITIAL_CAPACITY];

B

public void push(Object e) {
ensureCapacity();
elements[size++] = e;

Iy

public Object pop(Q {
if (size == @)
throw new EmptyStackException(Q);
return elements[--size];

}
[

» Ensure space for at least one more element, roughly
+ doubling the capacity each time the array needs to grow.

4
private void ensureCapacity() {
if (elements.length == size)
elements = Arrays.copyOf(elements, 2 * size + 1);
}

}

There’s nothing obviously wrong with this program (but see Item 29 for a
generic version). You could test it exhaustively, and it would pass every test with
flying colors, but there’s a problem lurking. Loosely speaking, the program has a
“memory leak,” which can silently manifest itself as reduced performance due to




ITEM 7: ELIMINATE OBSOLETE OBJECT REFERENCES

increased garbage collector activity or increased memory footprint. In extreme
cases, such memory leaks can cause disk paging and even program failure with an
OutOfMemoryError, but such failures are relatively rare.

So where is the memory leak? If a stack grows and then shrinks, the objects
that were popped off the stack will not be garbage collected, even if the program
using the stack has no more references to them. This is because the stack main-
tains obsolete references to these objects. An obsolete reference is simply a refer-
ence that will never be dereferenced again. In this case, any references outside of
the “active portion” of the element array are obsolete. The active portion consists
of the elements whose index is less than size.

Memory leaks in garbage-collected languages (more properly known as unin-
tentional object retentions) are insidious. If an object reference is unintentionally
retained, not only is that object excluded from garbage collection, but so too are
any objects referenced by that object, and so on. Even if only a few object refer-
ences are unintentionally retained, many, many objects may be prevented from
being garbage collected, with potentially large effects on performance.

The fix for this sort of problem is simple: null out references once they
become obsolete. In the case of our Stack class, the reference to an item becomes
obsolete as soon as it’s popped off the stack. The corrected version of the pop
method looks like this:

public Object pop() {
if (size == 0)
throw new EmptyStackException();
Object result = elements[--size];
elements[size] = null; // Eliminate obsolete reference
return result;

}

An added benefit of nulling out obsolete references is that if they are subse-
quently dereferenced by mistake, the program will immediately fail with a
NullPointerException, rather than quietly doing the wrong thing. It is always
beneficial to detect programming errors as quickly as possible.

When programmers are first stung by this problem, they may overcompensate
by nulling out every object reference as soon as the program is finished using it.
This is neither necessary nor desirable; it clutters up the program unnecessarily.
Nulling out object references should be the exception rather than the norm.
The best way to eliminate an obsolete reference is to let the variable that contained
the reference fall out of scope. This occurs naturally if you define each variable in
the narrowest possible scope (Item 57).

27




28

CHAPTER 2 CREATING AND DESTROYING OBJECTS

So when should you null out a reference? What aspect of the Stack class
makes it susceptible to memory leaks? Simply put, it manages its own memory.
The storage pool consists of the elements of the elements array (the object refer-
ence cells, not the objects themselves). The elements in the active portion of the
array (as defined earlier) are allocated, and those in the remainder of the array are
free. The garbage collector has no way of knowing this; to the garbage collector,
all of the object references in the elements array are equally valid. Only the
programmer knows that the inactive portion of the array is unimportant. The pro-
grammer effectively communicates this fact to the garbage collector by manually
nulling out array elements as soon as they become part of the inactive portion.

Generally speaking, whenever a class manages its own memory, the pro-
grammer should be alert for memory leaks. Whenever an element is freed, any
object references contained in the element should be nulled out.

Another common source of memory leaks is caches. Once you put an
object reference into a cache, it’s easy to forget that it’s there and leave it in the
cache long after it becomes irrelevant. There are several solutions to this problem.
If you’re lucky enough to implement a cache for which an entry is relevant exactly
so long as there are references to its key outside of the cache, represent the cache
as a WeakHashMap; entries will be removed automatically after they become
obsolete. Remember that WeakHashMap is useful only if the desired lifetime of
cache entries is determined by external references to the key, not the value.

More commonly, the useful lifetime of a cache entry is less well defined, with
entries becoming less valuable over time. Under these circumstances, the cache
should occasionally be cleansed of entries that have fallen into disuse. This can be
done by a background thread (perhaps a ScheduledThreadPoolExecutor) or as a
side effect of adding new entries to the cache. The LinkedHashMap class facilitates
the latter approach with its removeE1destEntry method. For more sophisticated
caches, you may need to use java.lang.ref directly.

A third common source of memory leaks is listeners and other callbacks.
If you implement an API where clients register callbacks but don’t deregister them
explicitly, they will accumulate unless you take some action. One way to ensure
that callbacks are garbage collected promptly is to store only weak references to
them, for instance, by storing them only as keys in a WeakHashMap.

Because memory leaks typically do not manifest themselves as obvious
failures, they may remain present in a system for years. They are typically
discovered only as a result of careful code inspection or with the aid of a
debugging tool known as a heap profiler. Therefore, it is very desirable to learn to
anticipate problems like this before they occur and prevent them from happening.




