CHAPTER 5

I = = = 1

Generics

SINCE Java 5, generics have been a part of the language. Before generics, you had
to cast every object you read from a collection. If someone accidentally inserted an
object of the wrong type, casts could fail at runtime. With generics, you tell the
compiler what types of objects are permitted in each collection. The compiler
inserts casts for you automatically and tells you at compile time if you try to insert
an object of the wrong type. This results in programs that are both safer and clearer,
but these benefits, which are not limited to collections, come at a price. This chap-
ter tells you how to maximize the benefits and minimize the complications.

Item 26: Don’t use raw types

First, a few terms. A class or interface whose declaration has one or more type
parameters is a generic class or interface [JLS, 8.1.2, 9.1.2]. For example, the
List interface has a single type parameter, E, representing its element type. The
full name of the interface is List<E> (read “list of E”), but people often call it List
for short. Generic classes and interfaces are collectively known as generic types.

Each generic type defines a set of parameterized types, which consist of the
class or interface name followed by an angle-bracketed list of actual type
parameters corresponding to the generic type’s formal type parameters [JLS, 4.4,
4.5]. For example, List<String> (read “list of string™) is a parameterized type
representing a list whose elements are of type String. (String is the actual type
parameter corresponding to the formal type parameter E.)

Finally, each generic type defines a raw type, which is the name of the generic
type used without any accompanying type parameters [JLS, 4.8]. For example, the
raw type corresponding to List<E> is List. Raw types behave as if all of the
generic type information were erased from the type declaration. They exist pri-
marily for compatibility with pre-generics code.

117

118

CHAPTER S5 GENERICS

Before generics were added to Java, this would have been an exemplary col-
lection declaration. As of Java 9, it is still legal, but far from exemplary:

// Raw collection type - don't do this!

// My stamp collection. Contains only Stamp instances.
private final Collection stamps = ... ;

If you use this declaration today and then accidentally put a coin into your stamp
collection, the erroneous insertion compiles and runs without error (though the
compiler does emit a vague warning):

// Erroneous insertion of coin into stamp collection
stamps.add(new Coin(...)); // Emits "unchecked call" warning

You don’t get an error until you try to retrieve the coin from the stamp collection:

// Raw iterator type - don't do this!
for (Iterator i = stamps.iterator(); i.hasNext();)
Stamp stamp = (Stamp) i.next(); // Throws ClassCastException
stamp.cancelQ);

As mentioned throughout this book, it pays to discover errors as soon as pos-
sible after they are made, ideally at compile time. In this case, you don’t discover
the error until runtime, long after it has happened, and in code that may be distant
from the code containing the error. Once you see the ClassCastException, you
have to search through the codebase looking for the method invocation that put the
coin into the stamp collection. The compiler can’t help you, because it can’t
understand the comment that says, “Contains only Stamp instances.”

With generics, the type declaration contains the information, not the comment:

// Parameterized collection type - typesafe
private final Collection<Stamp> stamps = ... ;

From this declaration, the compiler knows that stamps should contain only Stamp
instances and guarantees it to be true, assuming your entire codebase compiles
without emitting (or suppressing; see Item 27) any warnings. When stamps is
declared with a parameterized type declaration, the erroneous insertion generates
a compile-time error message that tells you exactly what is wrong:

Test.java:9: error: incompatible types: Coin cannot be converted
to Stamp
c.add(new Coin(Q));
A

ITEM 26: DON’T USE RAW TYPES

The compiler inserts invisible casts for you when retrieving elements from
collections and guarantees that they won’t fail (assuming, again, that all of your
code did not generate or suppress any compiler warnings). While the prospect of
accidentally inserting a coin into a stamp collection may appear far-fetched, the
problem is real. For example, it is easy to imagine putting a BigInteger into a
collection that is supposed to contain only BigDecimal instances.

As noted earlier, it is legal to use raw types (generic types without their type
parameters), but you should never do it. If you use raw types, you lose all the
safety and expressiveness benefits of generics. Given that you shouldn’t use
them, why did the language designers permit raw types in the first place? For
compatibility. Java was about to enter its second decade when generics were
added, and there was an enormous amount of code in existence that did not use
generics. It was deemed critical that all of this code remain legal and interoperate
with newer code that does use generics. It had to be legal to pass instances of
parameterized types to methods that were designed for use with raw types, and
vice versa. This requirement, known as migration compatibility, drove the deci-
sions to support raw types and to implement generics using erasure (Item 28).

While you shouldn’t use raw types such as List, it is fine to use types that are
parameterized to allow insertion of arbitrary objects, such as List<Object>. Just
what is the difference between the raw type List and the parameterized type
List<Object>? Loosely speaking, the former has opted out of the generic type
system, while the latter has explicitly told the compiler that it is capable of hold-
ing objects of any type. While you can pass a List<String> to a parameter of
type List, you can’t pass it to a parameter of type List<Object>. There are sub-
typing rules for generics, and List<String> is a subtype of the raw type List, but
not of the parameterized type List<Object> (Item 28). As a consequence, you
lose type safety if you use a raw type such as List, but not if you use a param-
eterized type such as List<Object>.

To make this concrete, consider the following program:

// Fails at runtime - unsafeAdd method uses a raw type (List)!
public static void main(String[] args) {
List<String> strings = new ArrayList<Q);
unsafeAdd(strings, Integer.value0f(42));
String s = strings.get(@); // Has compiler-generated cast

}

private static void unsafeAdd(List 1list, Object o) {
Tist.add(o);
}

119

120

CHAPTER 5 GENERICS

This program compiles, but because it uses the raw type List, you geta warning:

Test.java:10: warning: [unchecked] unchecked call to add(E) as a
member of the raw type List
1ist.add(0);
A

And indeed, if you run the program, you get a ClassCastException when the
program tries to cast the result of the invocation stri ngs.get (@), which is an
Integer, to a String. This is a compiler-generated cast, so it’s normally guaran-
teed to succeed, but in this case we ignored a compiler warning and paid the price.

If you replace the raw type List with the parameterized type List<Object>
in the unsafeAdd declaration and try to recompile the program, you’ll find that it
no longer compiles but emits the error message:

Test.java:5: error: incompatible types: List<String> cannot be
converted to List<Object>

unsafeAdd(strings, Integer.valueOf(42));
A

You might be tempted to use a raw type for a collection whose element type is
unknown and doesn’t matter. For example, suppose you want to write a method
that takes two sets and returns the number of elements they have in common.
Here’s how you might write such a method if you were new to generics:

// Use of raw type for unknown element type - don't do this!
static int numElementsInCommon(Set sl, Set s2) {
int result = 0;
for (Object ol : sl)
if (s2.contains(ol))
result++;
return result;

}

This method works but it uses raw types, which are dangerous. The safe alter-
native is to use unbounded wildcard types. If you want to use a generic type but
you don’t know or care what the actual type parameter is, you can use a question
mark instead. For example, the unbounded wildcard type for the generic type
Set<E> is Set<?> (read “set of some type™). It is the most general parameterized
Set type, capable of holding any set. Here is how the numEl ementsInCommon
declaration looks with unbounded wildcard types:

// Uses unbounded wildcard type - typesafe and flexible
static int numElementsInCommon(Set<?> sl, Set<?> s2) { ...}

ITEM 26: DON’T USE RAW TYPES

What is the difference between the unbounded wildcard type Set<?> and the
raw type Set? Does the question mark really buy you anything? Not to belabor the
point, but the wildcard type is safe and the raw type isn’t. You can put any element
into a collection with a raw type, easily corrupting the collection’s type invariant
(as demonstrated by the unsafeAdd method on page 119); you can’t put any ele-
ment (other than nul11) into a Collection<?>. Attempting to do so will generate
a compile-time error message like this:

WildCard.java:13: error: incompatible types: String cannot be
converted to CAP#1

c.add("verboten");
A

where CAP#1 is a fresh type-variable:
CAP#1 extends Object from capture of ?

Admittedly this error message leaves something to be desired, but the com-
piler has done its job, preventing you from corrupting the collection’s type invari-
ant, whatever its element type may be. Not only can’t you put any element (other
than nu11) into a Collection<?>, but you can’t assume anything about the type
of the objects that you get out. If these restrictions are unacceptable, you can use
generic methods (ltem 30) or bounded wildcard types (Item 31).

There are a few minor exceptions to the rule that you should not use raw
types. You must use raw types in class literals. The specification does not permit
the use of parameterized types (though it does permit array types and primitive
types) [JLS, 15.8.2]. In other words, List.class, String[].class, and
int.class are all legal, but List<String>.class and List<?>.class are not.

A second exception to the rule concerns the instanceof operator. Because
generic type information is erased at runtime, it is illegal to use the instanceof
operator on parameterized types other than unbounded wildcard types. The use of
unbounded wildcard types in place of raw types does not affect the behavior of the
instanceof operator in any way. In this case, the angle brackets and question
marks are just noise. This is the preferred way to use the instanceof operator
with generic types:

// lLegitimate use of raw type - instanceof operator
if (o instanceof Set) { // Raw type
Set<?> s = (Set<?>) o; // Wildcard type

121

122

CHAPTER 5 GENERICS

Note that once you’ve determined that o is a Set, you must cast it to the wildcard
type Set<?>, not the raw type Set. This is a checked cast, so it will not cause a
compiler warning.

In summary, using raw types can lead to exceptions at runtime, so don’t use
them. They are provided only for compatibility and interoperability with legacy
code that predates the introduction of generics. As a quick review, Set<Object> is
a parameterized type representing a set that can contain objects of any type,
Set<?> is a wildcard type representing a set that can contain only objects of some
unknown type, and Set is a raw type, which opts out of the generic type system.

The first two are safe, and the last is not.
For quick reference, the terms introduced in this item (and a few introduced
later in this chapter) are summarized in the following table:

Term Example Item
Parameterized type List<String> Item 26
Actual type parameter String Item 26
Generic type List<E> Items 26, 29
Formal type parameter E Item 26
Unbounded wildcard type List<?> Item 26
Raw type List Item 26
Bounded type parameter <E extends Number> Item 29
Recursive type bound <T extends Comparable<T>> Item 30
Bounded wildcard type List<? extends Number> Item 31
Generic method static <E> List<E> asList(E[] a) Item 30
Type token String.class Item 33

