
CHAPTER 5
Generics

Sr*a, Java 5, generics have been a part of the language. Before generics, you had
to cast every object you read from a collection. If someone accidentally inserted an
object of the wrong type, casts could fail at runtime. with generics, you tell the
compiler what types of objects are permitted in each collection. The compiler
inserts casts for you automatically and tells you at compile time if you try to insert
an object of the wrong type. This results in programs that are both safer and clearer,
but these benefits, which are not limited to collections, come at a price. This chap-
ter tells you how to maximize the benefits and minimize the complications.

Item 26: Don't use raw types

First, a few terms. A class or interface whose declaration has one oï morc type
pctrameters is a generic class or interface ULS,8.1.2, 9.r.21. For example, the
List interface has a single type parameter, E, representing its element type. The
full name of the interface is Li st<E> (read "list of E"), but people often call it Li st
for short. Generic classes and interfaces are collectively known as generic types.

Each generic type defines a set of parameterized types, which consist of the
class or interface name followed by an angle-bracketed list of actual type
parameters corresponding to the generic type's formal type parameters [JLS, 4.4,
4.51. For example, List<string> (read "list of string") is a parameterized type
representing a list whose elements are of type string. (string is the actual type
parameter corresponding to the formal type parameter E.)

Finally, each generic type defines a raw type, which is the name of the generic
type used without any accompanying type parameters [JLS, 4.g]. For example, the
raw type corresponding to List<E> is List. Raw types behave as if all of the
generic type information were erased from the type declaration. They exist pri-
marily for compatibility with pre-generics code.

t17

116 CHAPTER4 CLASSESANDINTERFACES

tell you that you've multiply defined the classes utensi I and Dessert. This is so

because the compiler will first compile Mai n. java, and when it sees the reference

toUtensil(whichprecedesthereferencetoDessert),itwilllookin
utensi 1 . java for this class and find both utensi I and Dessert. when the com-

piler encounters Dessert. java on the command line, it will pull in that file too,

causing it to encounter both definitions of utensi I and Dessert.

If you compile the program with the command j avac Mai n ' j ava or

javac Main. java utensil. java, it will behave as it did before you wrote the

Dessert. java file, printing pancake. But if you compile the program with the

commandjavacDessert'javaMain'java,itwillprintpotpie.Thebehavior
of the program is thus affected by the order in which the source files are passed to

the compiler, which is clearly unacceptable'

Fixùg the problem is as simple as splitting the top-level classes (Utensi 1 and

Des se rt, in the case of our example) into separate source files. If you are tempted

to put multiple top-level classes into a single source file, consider using static

member classes (Ttem 24) as an alternative to splitting the classes into separate

source files. If the classes are subservient to another class, making them into static

member classes is generally the better alternative because it enhances readability

and makes it possible to reduce the accessibility of the classes by declaring them

private (Item 15). Here is how our example looks with static member classes:

//Staticmemberclassesinsteadofmultipletop-levelclasses
pubf ic class Test {

public static void ma'in(String[] args) {
System.out.println(Utensil'NAME + Dessert'NAME) ;

]

private static class UtensiI {
static final String NAME = "Pan";

]

private static class Dessert {
static final String NAME = "cake";

]
]

The lesson is clear: Never put multiple top-level classes or interfaces in a

single source file. Following this rule guarantees that you can't have multiple

definitions for a single class at compile time. This in turn guarantees that the class

files generated by compilation, and the behavior of the resulting program' are

independent of the order in which the source files are passed to the compiler'



ITEM 26: DON'T USE RAW TYPES 119

The compiler inserts invisible casts for you when retrieving elements from
collections and guarantees that they won't fail (assuming, again, that all of your
code did not generate or suppress any compiler warnings). while the prospect of
accidentally inserting a coin into a stamp collection may appear far-fetched, the
problem is real. For example, it is easy to imagine putting a Bigrnteger into a

collection that is supposed to contain only BigDecimal instances.
As noted earlier, it is legal to use raw types (generic types without their type

parameters), but you should never do it. If you use raw types, you lose all the
safety and expressiveness benefits of generics. Given that you shouldn't use
them, why did the language designers permit raw types in the first place? For
compatibility. Java was about to enter its second decade when generics were
added, and there was an enormous amount of code in existence that did not use
generics. It was deemed critical that all of this code remain legal and interoperate
with newer code that does use generics. It had to be legal to pass instances of
panmeterized types to methods that were designed for use with raw types, and
vice versa. This requirement, known as migration compatibility, drove the deci-
sions to support raw types and to implement generics using erasure (Item 28).

while you shouldn't use raw types such as Li st, it is fine to use types that are
parameterized to allow insertion of arbitrary objects, such as Li st<object>. Just
what is the difference between the raw type Li st and the parameterized type
List<Object>? Loosely speaking, the former has opted out of the generic type
system, while the latter has explicitly told the compiler that it is capable of hold-
ing objects of any type. while you can pass a List<String> to a parameter of
type List, you can't pass it to a parameter of type List<object>. There are sub-
typing rules for generics, and Li st<Stri ng> is a subtype of the raw type Li st, but
not of the parameterized type List<Object> (Item28). As a consequence, you
lose type safety if you use a raw type such as Li st, but not if you use a param-
eterized type such as List<Object>.

To make this concrete, consider the following program:

// Fails at runtime - unsafeAdd method uses a raw type (List)!
pubiic static void main(StringU args) {

List<String> strings = new Arraylist<>O;
unsafeAdd(stri ngs, Integer.valueOf(42)) ;

String s = strings.get(O); // Has compiler-generated cast
]

private static void unsafeAdd(List 1ist, Object o) {
I i st. add(o) ;

]

I18 CHAPTER5 GENERICS

Before generics were added to Java, this would have been an exemplary col-

lection declaration. As of Java 9, it is still legal, but far from exemplary:

// Raw collection type - don't do this!

// lly stamp collection. Contains only Stamp instances'
private final Collection stamps = ... ;

If you use this declaration today and then accidentally put a coin into your stamp

collection, the erroneous insertion compiles and runs without error (though the

compiler does emit a vague warning):

// Erroneous insertion of coin into stamp collection
stamps.add(new coin( ... )); // Emits "unchecked cal1" warning

You don't get an error until you try to retrieve the coin from the stamp collection:

// Raw iterator type - don't do this!
for (Iterator i : stamps'iteratorO; i.hasNextO; )

Stamp stamp = (Stamp) i.nextO; // Ihrows ClassCastExcept'ion
stamp. cancel O ;

As mentioned throughout this book, it pays to discover errors as soon as pos-

sible after they are made, ideally at compile time. In this case, you don't discover

the error until runtime, long after it has happened, and in code that may be distant

from the code containing the error. Once you see the ClassCastExcept'i on, you

have to search through the codebase looking for the method invocation that put the

coin into the stamp collection. The compiler can't help you, because it can't

underStand the comment that Says, "Contai ns onl y Stamp 'i nstances."

With generics, the type declaration contains the information, not the comment:

// Paraneterized collection type - typesafe
private final Collection<Stamp> stamps i

From this declaration, the compiler knows that stamps should contain only Stamp

instances and guarantees it to be true, assuming your entire codebase compiles

without emitting (or suppressing; see htem27) any warnings. When stamps is

declared with a parameterized type declaration, the erroneous insertion generates

a compile-time error message that tells yott exactly what is wrong:

Test.java:9: error: incompatib"le types: coin cannot be converted
to Stamp

c.add(new CoinO);



ITEM 26: DON'T USE RAW TYPES I 19

The compiler inserts invisible casts for you when retrieving elements from
collections and guarantees that they won't fail (assuming, again, that all of your
code did not generate or suppress any compiler warnings). while the prospect of
accidentally inserting a coin into a stamp collection may appear far-fetched, the
problem is real. For example, it is easy to imagine putting a Bigrnteger into a
collection that is supposed to contain only B'igDeci ma'l instances.

As noted earlier, it is legal to use raw types (generic types without their type
parameters), but you should never do it. If you use raw types, you lose all the
safety and expressiveness benefits of generics. Given that you shouldn't use
them, why did the language designers permit raw types in the first place? For
compatibility. Java was about to enter its second decade when generics were
added, and there was an enormous amount of code in existence that did not use
generics. It was deemed critical that all of this code remain legal and interoperate
with newer code that does use generics. It had to be legal to pass instances of
parameterized types to methods that were designed for use with raw types, and
vice versa. This requirement, known as migration compatibility, drove the deci-
sions to support raw types and to implement generics using erasure (Item 28).

while you shouldn't use raw types such as Li st, it is fine to use types that are
parameterized to allow insertion of arbitrary objects, such as List<object>. Just
what is the difference between the raw type Li st and the parameterized type
List<Object>? Loosely speaking, the former has opted out of the generic type
system, while the latter has explicitly told the compiler that it is capable of hold-
ing objects of any type. while you can pass a List<string> to a parameter of
type Li st, you can't pass it to a parameter of type Li st<Obj ect>. There are sub-
typing rules for generics, and Li st<Stri ng> is a subtype of the raw type L.ist, but
not of the parameteized type List<Object> (Item28). As a consequence, you
lose type safety if you use a raw type such as Li st, but not if you use a param-
eterized type such as List<Object>.

To make this concrete, consider the following program:

// Fails at runtime - unsafeAdd method uses a raw type (List)!
pubiic static void main(String[] args) {

Li st<Stri ng> stri ngs = new Arrayli st+O ;
unsafeAdd(stri ngs, fnteger.valueOf(42)) ;
String s = strings.get(0); // Has compiler-generated cast

]
private static void unsafeAdd(List iist, Object o) {

list.add(o);
]

118 CHAPTER5 GENERICS

Before generics were added to Java, this would have been an exemplary col-

lection declaration. As of Java 9, it is still legal, but far from exemplary:

// Raw collection type - don't do this!

// l{y stamp collection. Contains only Stamp instances.
private final Collection stamps = ." i

If you use this declaration today and then accidentally put a coin into your stamp

collection, the erroneous insertion compiles and runs without error (though the

compiler does emit a vague warning):

// Emoneous insertion of coin into stamp collection
stamps.add(new coin( ... )); // Enits "unchecked cal1" warning

You don't get an error until you try to reffieve the coin from the stamp collection:

// Raw iterator type - don't do this!
for (Iterator i = stamps.iteratorO; i.hasNextO; )

Stamp stamp = (Stamp) i.nextO; // Throws ClasscastException
stamp. cancel O ;

As mentioned throughout this book, it pays to discover elrors as soon as pos-

sible after they are made, ideally at compile time. In this case, you don't discover

the error until runtime, long after it has happened, and in code that may be distant

from the code containing the error. Once you see the ClassCastException, you

have to search through the codebase looking for the method invocation that put the

coin into the stamp collection. The compiler can't help you, because it can't

understand the comment that says, "Contai ns onl y Stamp i nstances"'

With generics, the type declaration contains the information, not the comment:

// Paraneterized collection type - typesafe
private fina1 Collection<Stamp> stamps I

From this declaration, the compiler knows that stamps should contain only Stamp

instances and guarantees it to be true, assuming your entire codebase compiles

without emitting (or suppressing; see ltem}7) any warnings. When stamps is

declared with a parameterized type declaration, the erroneous insertion generates

a compile-time error message that tells you exactly what is wrong:

Test.java:9: error: incompatible types: Coin cannot be converted
to Stamp

c.add(new CoinO);



ITEM 26: DON'T USE RAW TYPES 121

What is the difference between the unbounded wildcard type Set<?> and the
raw type Set? Does the question mark really buy you anything? Not to belabor the
point, but the wildcard type is safe and the raw type isn't. You can put any element
into a collection with a raw type, easily corrupting the collection's type invariant
(as demonstrated by the unsafeAdd method on page 119); you can't put any ele-
ment (other than null) into a Collection<?>. Attempting to do so will generate
a compile-time effor message like this:

WildCard.java:13: error: incompatib'le types: String cannot be
converted to CAP#1

c.add("verboten");

^where CAP#1 is a fresh type-variable:
CAP#1 extends Object from capture of ?

Admittedly this error message leaves something to be desired, but the com-
piler has done its job, preventing you from conupting the collection's type invari-
ant, whatever its element type may be. Not only can't you put any element (other
than null) into a Collection<?>, but you can't assume anything about the type
of the objects that you get out. If these restrictions are unacceptable, you can use
generic methods (Item 30) or bounded wildcard types (Item3l).

There are a few minor exceptions to the rule that you should not use raw
types. You must use raw types in class literals. The specification does not permit
the use of parameterized types (though it does permit anay types and primitive
types) ULS, 15.8.21. In other words, Li st. c1ass, Stri ng [] . c'lass, and
i nt. cl ass are all legal, but Li st<Stri ng>. cl ass and Li st<?>. cl ass are not.

A second exception to the rule concerns the instanceof operator. Because
generic type information is erased at runtime, it is illegal to use the i nstanceof
operator on parameterized types other than unbounded wildcard types. The use of
unbounded wildcard types in place of raw types does not affect the behavior of the
instanceof operator in any way. In this case, the angle brackets and question
marks are just noise. This is the preferred way to use the instanceof operator
with generic types:

// Legitinate use of raw type - instanceof operator
if (o instanceof Set) { // Raw type

Set<?> 5 = (Set<?>) o; // Wjldcard type

1
J

I2O CHAPTER 5 GENERICS

This program compiles, but because it uses the raw type Li st, you get a warnlng:

Test.java:10: warning: [unchecked] unchecked call to add(E) as a
member of the raw tYPe List

list.add(o);
^

And indeed, if you run the progfam, you get a ClassCastException when the

program tries to cast the result of the invocation strings.get(0), which is an

Integer, to a Stri ng. This is a compiler-generated cast, so it's normally guaran-

teed to succeed, but in this case we ignored a compiler warning and paid the price'

If you replace the raw type List with the parameterized type List<Object>

in the unsafeAdd declaration and try to recompile the program' you'll find that it

no longer compiles but emits the error message:

Test.java:5: error: incompatible types: List<string> cannot be

converted to List<Object>
unsafeAdd (st ri ngs , Intege r . val ueOf (42) ) ;

^

You might be tempted to use a raw type for a collection whose element type is

unknown and doesn't matter. For example' suppose you want to write a method

that takes two sets and returns the number of elements they have in common'

Here's how you might write such a method if you were new to generics:

//Useofrawtypeforunknownelenenttype-don'tdothis!
static int numElementslncommon(Set s1, Set s2) {

i nt resul t = 0)
for (Object 01 : s1)

if (s2'contains(o1))
resul t++;

return result;
]

This method works but it uses raw types, which are dangerous. The safe alter-

native is to use unbounded wildcard types. If you want to use a generic type but

you don't know or care what the actual type parameter is, you can use a question

mark instead. For example, the unbounded wildcard type for the generic type

Set<E> is Set<?> (read "set of some type"). It is the most general parameterized

Set type, capable of holding any set. Here is how the numElementslnCommon

declaration looks with unbounded wildcard types:

// Uses unbounded wildcard type - typesafe and flexible
static int numElementslnCommon(Set<?> sl, Set<?> s2) { ' " }



ITEM 26: DoN'T IISE MwTYPES 121

What is the difference between the unbounded wildcard type Set<?> and the
raw type Set? Does the question mark really buy you anything? Not to belabor the
point, but the wildcard type is safe and the raw type isn't. You can put any element
into a collection with a raw type, easily corrupting the collection's type invariant
(as demonstrated by the unsafeAdd method on page 119); you can,t put any ele-
ment (other than nul l ) into a Col I ection<?>. Attempting to do so will generate

a compile-time effor message like this:

WildCard.java:13: error: incompatib'le types: String cannot be
converted to CAP#1

c.add("verboten");

^where CAP#1 is a fresh type-variable:
CAP#I- extends Object from capture of ?

Admittedly this error message leaves something to be desired, but the com-
piler has done its job, preventing you from corrupting the collection's type invari-
ant, whatever its element type may be. Not only can't you put any element (other
than null) into a Collection<?>, but you can't assume anything about the type
of the objects that you get out. If these restrictions are unacceptable, you can use
generic methods (Item 30) or bounded wildcard types (IIem3l).

There are a few minor exceptions to the rule that you should not use raw
types. You must use raw types in class literals. The specification does not permit
the use of parameterized types (though it does permit array types and primitive
types) ULS, 15.8.21. In other words, L'ist. c1ass, Stri ng [] . c1ass, and
i nt. cl ass are all legal, but Li st<Stri ng>. c1 ass and Li st<?>. cl ass are not.

A second exception to the rule concerns the i nstanceof operator. Because
generic type information is erased at runtime, it is illegal to use the i nstanceof
operator on parameterized types other than unbounded wildcard types. The use of
unbounded wildcard types in place ofraw types does not affect the behavior ofthe
instanceof operator in any way. In this case, the angle brackets and question
marks are just noise. This is the preferred way to use the instanceof operator
with generic types:

// Legitinate use of raw type - instanceof operator
if (o instanceof Set) { // Raw type

Set<?> 5 = (Set<?>) o; // Wildcard type

]

I2O CHAPTER, GENERICS

This program compiles, but because it uses the raw type Li st, you get a warntng:

Test.java:10: warning: [unchecked] unchecked call to add(E) as a
member of the raw tYPe List

list.add(o);
^

And indeed, if you run the program, you get a ClassCastException when the

program tries to cast the result of the invocation strings'get(0), which is an

Integer, to a String. This is a compiler-generated cast, so it's normally guaran-

teed to succeed, but in this case we ignored a compiler warning and paid the price'

If you replace the raw type L'i st with the parameterized type Li st<Ob j ect>

in the unsafeAdd declaration and try to recompile the program, you'llfind that it

no longer compiles but emits the error message:

Test.java:5: error: incompatible types: List<String> cannot be

converted to List<Object>
unsafeAdd(stri ngs, Integer.val ueOf(42)) ;

^

You might be tempted to use a raw type for a collection whose element type is

unknown and doesn't matter. For example, suppose you want to write a method

that takes two sets and returns the number of elements they have in common'

Here's how you might write such a method if you were new to generics:

//Useofrawtypeforunknownelementtype-don'tdothis!
static int numElementslncommon(Set sl, Set s2) {

int result : 0i
for (Object 01 I sl-)

i f (s2 . contai ns (o1-) )
resul t++;

return result;
]

This method works but it uses raw types, which are dangerous. The safe alter-

native is to use unbound.ed wildcard types.lf you want to use a generic type but

you don't know or care what the actual type parameter is, you can use a question

mark instead. For example, the unbounded wildcard type for the generic type

Set<E> is Set<?> (read "set of some type"). It is the most general parameterized

set type, capable of holding any set. Here is how the numEl ementslncommon

declaration looks with unbounded wildcard types:

// Uses unbounded wildcard type - typesafe and flexible
static int numElementslnCommon(Set<?> sl, Set<?> s2) { "' }



122 CHAPTER 5 GENERICS

Note that once you've determined that o is a Set, you must cast it to the wildcard

type Set<?>, not the raw type Set. This is a checked cast, so it will not cause a

compiler warning.

In summary, using raw types can lead to exceptions at runtime, so don't use

them. They are provided only for compatibility and interoperability with legacy

code that predates the introduction of generics. As a quick review, Set<Object> is

a parameterized type representing a set that can contain objects of any type,

Set<?> is a wildcard type representing a set that can contain only objects of some

unknown type, and Set is a raw type, which opts out of the generic type system.

The first two are safe, and the last is not.

For quick reference, the terms introduced in this item (and a few introduced

later in this chapter) are summarized in the following table:

Term Example Item

Parameterized type

Actual type parameter

Generic type

Formal type parameter

Unbounded wildcard type

Raw type

Bounded type parameter

Recursive type bound

Bounded wildcard type

Generic method

Type token

Li st<Stri ng>

Stri ng

Li st<E>

E

Li st<?>

Li st

<E extends Number>

<T extends Comparable<T>>

List<? extends Number>

static <E> List<E> aslist(E[] a)

St ri ng . cl ass

Item26

Item26

Items26,29

Item26

Item26

Item26

Item29

Item 30

Item 31

Item 30

Item 33

ITEM 27: ELIMINATE UNCHECKED WARNINGS I23

Item 27 z Eliminate unchecked warnings

When you program with generics, you will see many compiler warnings:
unchecked cast warnings, unchecked method invocation warnings, unchecked
parameterized vararg type warnings, and unchecked conversion warnings. The
more experience you acquire with generics, the fewer warnings you'll get, but
don't expect newly written code to compile cleanly.

Many unchecked wamings are easy to eliminate. For example, suppose you
accidentally write this declaration:

Set<Lark> exaltation = hêw HashSetO;

The compiler will gently remind you what you did wrong:

Venery.java:4: warning: funchecked] unchecked conversion
Set<Lark> exaltation = r1êw HashSetO;

^requi red: Set<Lark>
found: HashSet

You can then make the indicated correction, causing the warning to disappear.
Note that you don't actually have to specify the type parameter, merely to indicate
that it's present with the diamond operator (+), introduced in Java 7 . The com-
piler will then infer the conect actual type parameter (in this case, Lark):

Set<Lark> exaltation = rêw HashSet<>O;

Some warnings will be much more difficult to eliminate. This chapter is filled
with examples of such warnings. When you get warnings that require some
thought, persevere! Eliminate every unchecked warning that you can. If you
eliminate all warnings, you are assured that your code is typesafe, which is a very
good thing. It means that you won't get a Cl assCastExcepti on at runtime, and it
increases your confidence that your program will behave as you intended.

If you can't eliminate a warning, but you can prove that the code that
provoked the warning is typesafe, then (and only then) suppress the warning
with an @suppressWarn'ings("unchecked") annotation. If you suppress warn-
ings without first proving that the code is typesafe, you are giving yourself a false
sense of security. The code may compile without emitting any warnings, but it can
still throw a Cl assCastExcepti on at runtime. If, however, you ignore unchecked
warnings that you know to be safe (instead of suppressing them), you won't notice
when a new warning crops up that represents a real problem. The new warning
will get lost amidst all the false alarms that you didn't silence.


