
80 CHAPTER4 CLASSESANDINTERFACES

Item 17: Minimize mutability

An immutable class is simply a class whose instances cannot be modified. A1l of
the information contained in each instance is fixed for the lifetime of the object, so

no changes can ever be observed. The Java platform libraries contain many
immutable classes, including Stri ng, the boxed primitive classes, and
Bigrnteger and BigDecimal. There are many good reasons for this: Immutable
classes are easier to design, implement, and use than mutable classes. They are

less prone to effor and are more secure.

To make a class immutable, follow these five rules:

1. Donot provide methods that modify the object's state (known as mutators).

2. Ensure that the class can't be extended. This prevents careless or malicious
subclasses from compromising the immutable behavior of the class by
behaving as if the object's state has changed. Preventing subclassing is
generally accomplished by making the class final, but there is an alternative
that we'11 discuss later.

3. Make all fÏelds fÏnal. This clearly expresses your intent in a manner that is en-
forced by the system. Also, it is necessary to ensure correct behavior if a refer-
ence to a newly created instance is passed from one thread to another without
synchronization, as spelled out in the memory model [JLS, 17.5; Goetz06, 16].

4. Make all fields private. This prevents clients from obtaining access to
mutable objects referred to by fields and modifying these objects directly.
While it is technically permissible for immutable classes to have public final
fields containing primitive values or references to immutable objects, it is not
recommended because it precludes changing the internal representation in a
later release (Items 15 and 16).

5. Ensure exclusive access to any mutable components. If your class has any
fields that refer to mutable objects, ensure that clients of the class cannot obtain
references to these objects. Never initialize such a field to a client-provided
object reference or return the field from an accessor. Make defensive copies
(Item 50) in constructors, accessors, and readObject methods (Item 88).

Many of the example classes in previous items are immutable. One such class
is PhoneNumber in Item 11, which has accessors for each attribute but no cone-
sponding mutators. Here is a slightly more complex example:

ITEM 17: MINIMIZE MIJTABILITY 81

// Innutable conplex number class
public final class Complex {

private final double re;
private final double im;

public Complex(double re, double im) {
this.re = re;
this.im = im;

1
J

public double realParto { return re; }
public double imaginaryPartO { return im; }
public Complex plus(Complex c) {

return new Complex(re + c.re, im + c.im);
]
public Complex minus(Complex c) {

return new Complex(re - c.re, im - c.im);
]
public Complex times(Complex c) {

return new Complex(re :r c.Fê - im 't ç.jp,
Fê :! C,im + im rr c.fe);

]
public Complex dividedBy(Compiex c) {

double tmp = c.r€ :! c.re + c.im * c.im;
return new Complex((re rr c.tê + im,', c.im) / tmp,

(im,'. c.re - re,,. c.im) / tmp);
]
@Override public boolean equals(Object o) {

if (o == this)
return true;

if (l (o instanceof Complex))
retu rn fal se;

Compl ex c = (Compl ex) o;

// See page 47 to find out why we use compare instead of ==
retu rn Doubl e. compare (c . re , re) == 6

&& Double.compare(c.im, im) == 6'
]
@Override public 'int hashCodeO {

return 31''. Double.hashCode(re) + Double.hashCode(im) ;

]
@Override public String tostrinSO {

return "(" + re + " + " + im + "i)";
]

]

80 CHAPTER 4 CLASSES AND INTERFACES

Item 17: Minimize mutability

An immutable class is simply a class whose instances cannot be modified. All of
the information contained in each instance is fixed for the lifetime of the object, so

no changes can ever be observed. The Java platform libraries contain many
immutable classes, including Stri ng, the boxed primitive classes, and
Bigrnteger and BigDecimal. There are many good reasons for this: Immutable
classes are easier to design, implement, and use than mutable classes. They are
less prone to error and are more secure.

To make a class immutable, follow these five rules:

1. Don't provide methods that modify the object's state (known as mutators).

2. Ensure that the class can't be extended. This prevents careless or malicious
subclasses from compromising the immutable behavior of the class by
behaving as if the object's state has changed. Preventing subclassing is
generally accomplished by making the class final, but there is an alternative
that we'll discuss later.

3. Make all fields final. This clearly expresses your intent in a manner that is en-
forced by the system. Also, it is necessary to ensure correct behavior if a refer-
ence to a newly created instance is passed from one thread to another without
synchronization, as spelled out in the tnemory model [JLS, 17.5; Goetz06, 16].

4. Make all fïelds private. This prevents clients from obtaining access to
mutable objects referred to by fields and modifying these objects directly.
While it is technically permissible for immutable classes to have public final
fields containing primitive values or references to immutable objects, it is not
recommended because it precludes changing the internal representation in a

later release (Items 15 and 16).

5. Ensure exclusive access to any mutable components. If your class has any
fields that refer to mutable objects, ensure that clients of the class cannot obtain
references to these objects. Never initialize such a field to a client-provided
object reference or return the field from an accessor. Make defensive copies
(Item 50) in constructors, accessors, and readObject methods (Item 88).

Many of the example classes in previous items are immutable. One such class
is PhoneNumber in Item 11, which has accessors for each attribute but no corre-
sponding mutators. Here is a slightly more complex example:

ITEM]7: MINIMIZEMUTABILITY 8I

// Tmnutable complex number class
publ -i c f i nal cl ass Compl ex {

private final double re;
private final double im;

public Complex(double re, double im) {
thi s. re = re;
this.im = im;

]
public double realPartO { return re; }
public double imaginaryPartO { return im; }
public Complex plus(Complex c) {

return new Complex(re + c. re, im + c.im);
]
public Complex minus(Complex c) {

return new Complex(re - c.re, im - c.im);
]
public Complex times(Complex c) {

return new Complex(re :! c. F€ - im 't ç. jp,
Fê :t C,im + im ii c,fe);

]
public Complex dividedBy(Complex c) {

double tmp = c.l€ :! c.re + c.im '', c.im;
return new Complex((re :k C. rê + im ,,, c.im) / tmp,

(im,r c.re - re,'. c.im) / tmp);
]
@0verride public boolean equals(Object o) {

if (o == this)
return true;

if (! (o instanceof Complex))
return fal se;

Compl ex 6 = (Compl ex) o;

// See page 47 to find out why we use compare instead of ==
return Doubl e. compare(c. re, re) == 6

&& Doubl e . compare (c . i m, -im) == 6 '

]
@Override public int hashCodeO {

return 31''. Double.hashCode(re) + Double.hashCode(im) ;

]
@Override public String toStrinSO {

return "(" + re + " + " + im + "i)";
]

]

ITEM 17: MINIMIZE MUTABILITY 83

costs. Opting for static factories in place of public constructors when designing a

new class gives you the flexibility to add caching later, without modifying clients.
A consequence of the fact that immutable objects can be shared freely is that

you never have to make defensive copies of them (Item 50). In fact, you never
have to make any copies at all because the copies would be forever equivalent to
the originals. Therefore, you need not and should not provide a cl one method or
copy constructor (Item 13) on an immutable class. This was not well understood
in the early days of the Java platform, so the Stri ng class does have a copy con-
structor, but it should rarely, if ever, be used (Item 6).

Not only can you share immutable objects, but they can share their inter-
nals. For example, the Biglnteger class uses a sign-magnitude representation
internally. The sign is represented by an i nt, and the magnitude is represented by
an i nt array. The negate method produces a new Bi glntege r of like magnitude
and opposite sign. It does not need to copy the affay even though it is mutable; the
newly created Bi glnteger points to the same internal array as the original.

Immutable objects make great building blocks for other objects, whether
mutable or immutable. It's much easier to maintain the invariants of a complex
object if you know that its component objects will not change underneath it. A
special case of this principle is that immutable objects make great map keys and

set elements: you don't have to worry about their values changing once they're in
the map or set, which would destroy the map or set's invariants.

Immutable objects provide failure atomicity for free (Item 76). Their state

never changes, so there is no possibility of a temporary inconsistency.
The major disadvantage of immutable classes is that they require a

separate object for each distinct value. Creating these objects can be costly,
especially if they are large. For example, suppose that you have a million-bit
Bi glnteger and you want to change its low-order bit:

Biglnteger moby = .. . '
mobY = mobY.fliPBit(0) ;

The fl i pBi t method creates a new Bi glnteger instance, also a million bits long,
that differs from the original in only one bit. The operation requires time and

space proportional to the size of the B'iglnteger. Contrast this to
java.util.Bitset. Like Biglnteger, Bitset represents an arbitrarily long
sequence ofbits, but unlike Biglnteger, Bitset is mutable. The BitSet class
provides a method that allows you to change the state of a single bit of a million-
bit instance in constant time:

Bitset moby = .. . '
moby. f1 i p(0) ;

82 CHAPTER 4 CI"ASSES AND INTERFACES

This class represents a complex number (a number with both real and imagi-

nary parts). In addition to the standard Object methods, it provides accessors for

the real and imaginary parts and provides the four basic arithmetic operations:

addition, subtraction, multiplication, and division. Notice how the arithmetic oper-

ations create and return a new Compl ex instance rather than modifying this

instance. This pattern is known as the functional approach because methods return

the result of applying a function to their operand, without modifying it. Contrast it
to the procedural or imperative approach in which methods apply a procedure to

their operand, causing its state to change. Note that the method names are preposi-

tions (such as pl us) rather than verbs (such as add). This emphasizes the fact that

methods don't change the values of the objects. The B'iglntege r and Bi gDec'ima'l

classes did not obey this naming convention, and it led to many usage effors.

The functional approach may appear unnatural if you're not familiar with it,

but it enables immutability, which has many advantages. Immutable objects are

simple. An immutable object can be in exactly one state, the state in which it was

created. If you make sure that all constructors establish class invariants, then it is
guaranteed that these invariants will remain true for all time, with no further effort

on your part or on the part of the programmer who uses the class. Mutable objects,

on the other hand, can have arbitrarily complex state spaces. If the documentation

does not provide a precise description of the state transitions performed by muta-

tor methods, it can be difficult or impossible to use a mutable class reliably.

Immutable objects are inherently thread-safe; they require no synchroni-

zation. They cannot be comrpted by multiple threads accessing them concur-

rently. This is far and away the easiest approach to achieve thread safety. Since no

thread can ever observe any effect of another thread on an immutable object,

immutable objects can be shared freely. Immutable classes should therefore

encourage clients to reuse existing instances wherever possible. One easy way to

do this is to provide public static final constants for commonly used values. For

example, the Compl ex class might provide these constants:

pub'lic static final Complex ZERO = hêw Complex(0, 0);
public static final Complex ONE = hêw Complex(l-, 0);
public static final Complex I = hêw Complex(O, 1);

This approach can be taken one step further. An immutable class can provide

static factories (Item 1) that cache frequently requested instances to avoid creating

new instances when existing ones would do. All the boxed primitive classes and

Biglnteger do this. Using such static factories causes clients to share instances

instead of creating new ones, reducing memory footprint and garbage collection

82 CHAPTER4 CI"{SSESANDINTERFACES

This class represents a complex number (a number with both real and imagi-

nary parts). In addition to the standard Object methods, it provides accessors for
the real and imaginary parts and provides the four basic arithmetic operations:

addition, subtraction, multiplication, and division. Notice how the arithmetic oper-

ations create and return a new Compl ex instance rather than modifying this

instance. This pattern is known as the functional approach because methods return

the result of applying a function to their operand, without modifying it. Contrast it
to the procedural or imperative approach in which methods apply a procedure to

their operand, causing its state to change. Note that the method names are preposi-

tions (such as pl us) rather than verbs (such as add). This emphasizes the fact that

methods don't change the values of the objects. The B'i glntege r and Bi gDeci ma1

classes did not obey this naming convention, and it led to many usage effors.

The functional approach may appear unnatural if you're not familiar with it,
but it enables immutability, which has many advantages. Immutable objects are

simple. An immutable object can be in exactly one state, the state in which it was

created. If you make sure that all constructors establish class invariants, then it is
guaranteed that these invariants will remain true for all time, with no further effort

on your part or on the part of the programmer who uses the class. Mutable objects,

on the other hand, can have arbitrarily complex state spaces. If the documentation

does not provide a precise description of the state transitions performed by muta-

tor methods, it can be difficult or impossible to use a mutable class reliably.

Immutable objects are inherently thread-safe; they require no synchroni-

zation. They cannot be comrpted by multiple threads accessing them concur-

rently. This is far and away the easiest approach to achieve thread safety. Since no

thread can ever observe any effect of another thread on an immutable object,

immutable objects can be shared freely. Immutable classes should therefore

encourage clients to reuse existing instances wherever possible. One easy way to

do this is to provide public static final constants for commonly used values. For

example, the Compl ex class might provide these constants:

pubf ic static final Com
public static final Com
public static final Com

ex ZER0 = hêw Complex(O, 0);
ex ONE = hêw Complex(l, 0);
ex I = hêw Complex(O, 1);

This approach can be taken one step further. An immutable class can provide

static factories (Item 1) that cache frequently requested instances to avoid creating

new instances when existing ones would do. All the boxed primitive classes and

B'iglnteger do this. Using such static factories causes clients to share instances

instead qf creating new ones, reducing memory footprint and garbage collection

p1

p1

p1

ITEM 17: MINIMIZEMUTABILITY 83

costs. Opting for static factories in place of public constructors when designing a
new class gives you the flexibility to add caching later, without modifying clients.

A consequence of the fact that immutable objects can be shared freely is that
you never have to make defensive copies of them (Item 50). In fact, you never
have to make any copies at all because the copies would be forever equivalent to
the originals. Therefore, you need not and should not provide a cl one method or
copy constructor (Item 13) on an immutable class. This was not well understood
in the early days of the Java platform, so the Stri ng class does have a copy con-
structor, but it should rarely, if ever, be used (Item 6).

Not only can you share immutable objects, but they can share their inter-
nals. For example, the Biglnteger class uses a sign-magnitude representation
internally. The sign is represented by an i nt, and the magnitude is represented by
an int array. The negate method produces a new B'iglnteger of like magnitude
and opposite sign. It does not need to copy the array even though it is mutable; the

newly created B'iglnteger points to the same internal array as the original.
Immutable objects make great building blocks for other objects, whether

mutable or immutable. It's much easier to maintain the invariants of a complex
object if you know that its component objects will not change undemeath it. A
special case of this principle is that immutable objects make great map keys and

set elements: you don't have to worry about their values changing once they're in
the map or set, which would destroy the map or set's invariants.

Immutable objects provide failure atomicity for free (Item 76). Their state

never changes, so there is no possibility of a temporary inconsistency.
The major disadvantage of immutable classes is that they require a

separate object for each distinct value. Creating these objects can be costly,
especially if they are large. For example, suppose that you have a million-bit
B'iglnteger and you want to change its low-order bit:

B'iglnteger moby = ... '
mobY = mobY.fliPBit(0) ;

The fl i pBi t method creates a new Bi glnteger instance, also a million bits long,
that differs from the original in only one bit. The operation requires time and

space proportional to the size of the Bi glnteger. Contrast this to
java.util.Bitset. Like BigInteger, Bitset represents an arbitrarily long
sequence ofbits, but unlike Biglnteger, Bitset is mutable. The BitSet class
provides a method that allows you to change the state of a single bit of a million-
bit instance in constant time:

Bitset moby = ... '
moby.flip(0);

ITEM 17: MINIMIZE MUTABILITY 85

This approach is often the best alternative. It is the most flexible because it
allows the use of multiple package-private implementation classes. To its clients
that reside outside its package, the immutable class is effectively final because it is
impossible to extend a class that comes from another package and that lacks a

public or protected constructor. Besides allowing the flexibility of multiple
implementation classes, this approach makes it possible to tune the performance
of the class in subsequent releases by improving the object-caching capabilities of
the static factories.

It was not widely understood that immutable classes had to be effectively final
when Biglnteger and BigDecimal were written, so all of their methods may be
overridden. Unfortunately, this could not be corrected after the fact while preserv-
ing backward compatibility. If you write a class whose security depends on the
immutability of a Biglnteger or B"igDecimal argument from an untrusted client,
you must check to see that the argument is a "real" Biglnteger or BigDecimal,
rather than an instance of an untrusted subclass. If it is the latter, you must defen-
sively copy it under the assumption that it might be mutable (Item 50):

public static Biglnteger safelnstance(B'iglnteger val) {
return val.getClassO == Biglnteger.class ?

val : new Biglnteger(val.toByteArrayO);
]

The list of rules for immutable classes at the beginning of this item says that
no methods may modify the object and that all its fields must be final. In fact these
rules are a bit stronger than necessary and can be relaxed to improve performance.
In truth, no method may produce an externally visible change in the object's state.
However, some immutable classes have one or more nonfinal fields in which they
cache the results of expensive computations the first time they are needed. If the
same value is requested again, the cached value is returned, saving the cost of
recalculation. This trick works precisely because the object is immutable, which
guarantees that the computation would yield the same result if it were repeated.

For example, PhoneNumber's hashCode method (Item 11, page 53) computes
the hash code the first time it's invoked and caches it in case it's invoked again.
This technique, an example of lazy initialization (Item 83), is also used by
Stri ng.

One caveat should be added concerning serializability. If you choose to have
your immutable class implement Se ri al i zabl e and it contains one or more fields
that refer to mutable objects, you must provide an explicit readObject or
readResolve method, or use the ObjectOutputstream.writeUnshared and

84 CHAPTER4 CLASSESAND INTERFACES

The performance problem is magnified if you perform a multistep operation

that generates a new object at every step, eventually discarding all objects except

the final result. There are two approaches to coping with this problem. The first is

to guess which multistep operations will be commonly required and to provide

them as primitives. If a multistep operation is provided as a primitive, the

immutable class does not have to create a separate object at each step. Internally,

the immutable class can be arbitrarily clever. For example, Bi glnteger has a pack-

age-private mutable "companion class" that it uses to speed up multistep operations

such as modular exponentiation. It is much harder to use the mutable companion

class than to use Biglnteger, for all of the reasons outlined earlier. Luckily, you

don't have to use it: the implementors of Bi glnteger did the hard work for you.

The package-private mutable companion class approach works fine if you can

accurately predict which complex operations clients will want to perform on your

immutable class. If not, then your best bet is to provide a public mutable

companion class. The main example of this approach in the Java platform libraries

is the String class, whose mutable companion is StringBu'i1der (and its

obsolete predecessor, St ri ngBuffe r).
Now that you know how to make an immutable class and you understand the

pros and cons of immutability, let's discuss a few design alternatives. Recall that

to guarantee immutability, a class must not permit itself to be subclassed. This can

be done by making the class final, but there is another, more flexible alternative.

Instead of making an immutable class final, you can make all of its constructors

private or package-private and add public static factories in place of the public

constfuctors (Item 1). To make this concrete, here's how Compl ex would look if
you took this approach:

// Imnutable class with static factories instead of constructors
public class Complex {

private final double re;
private final double im;

private Complex(double re, double im) {
thi s. re = re;
this.im = im;

]
pub'lic static Complex valueof(double re, double in) {

return new ComPlex(re, im);
]
... // Remainder unchanged

i

ITEM 17: MINIMIZE MUTABILITY 85

This approach is often the best alternative. It is the most flexible because it
allows the use of multiple package-private implementation classes. To its clients
that reside outside its package, the immutable class is effectively final because it is
impossible to extend a class that comes from another package and that lacks a

public or protected constructor. Besides allowing the flexibility of multiple
implementation classes, this approach makes it possible to tune the performance
of the class in subsequent releases by improving the object-caching capabilities of
the static factories.

It was not widely understood that immutable classes had to be effectively final
when Biglnteger and BigDecimal were written, so all of their methods may be
overridden. Unfortunately, this could not be corrected after the fact while preserv-
ing backward compatibility. If you write a class whose security depends on the
immutability of a Biglnteger or BigDecimal argument from an untrusted client,
you must check to see that the argument is a "real" Biglnteger or B'i gDecimal ,

rather than an instance of an untrusted subclass. If it is the latter, you must defen-
sively copy it under the assumption that it might be mutable (Item 50):

pubf ic static Biglnteger safelnstance(Biglnteger val) {
return val.getClassO == Biglnteger.class ?

val : new Biglnteger(val.toByteArrayO) ;

]

The list of rules for immutable classes at the beginning of this item says that
no methods may modify the object and that all its fields must be final. In fact these
rules are a bit stronger than necessary and can be relaxed to improve performance.
In truth, no method may produce an externally visible change in the object's state.
However, some immutable classes have one or more nonfinal fields in which they
cache the results of expensive computations the first time they are needed. If the
same value is requested again, the cached value is returned, saving the cost of
recalculation. This trick works precisely because the object is immutable, which
guarantees that the computation would yield the same result if it were repeated.

For example, PhoneNumber's hashCode method (Item 11, page 53) computes
the hash code the first time it's invoked and caches it in case it's invoked again.
This technique, an example of lazy initialization (Item 83), is also used by
St ri ng.

One caveat should be added concerning serializability. Ifyou choose to have
your immutable class implement Seri al i zabl e and it contains one or more fields
that refer to mutable objects, you must provide an explicit readObject or
readResolve method, or use the ObjectOutputstream.writeUnshared and

84 CHAPTER4 CLASSESANDINTERFACES

The performance problem is magnified if you perform a multistep operation

that generates a new object at every step, eventually discarding all objects except

the final result. There are two approaches to coping with this problem. The first is

to guess which multistep operations will be commonly required and to provide

them as primitives. If a multistep operation is provided as a primitive, the

immutable class does not have to create a separate object at each step. Internally,

the immutable class can be arbitrarily clever. For example, Bi glnteger has a pack-

age-private mutable "companion class" that it uses to speed up multistep operations

such as modular exponentiation. It is much harder to use the mutable companion

class than to use Biglnteger, for all of the reasons outlined earlier. Luckily, you

don't have to use it: the implementors of Bi glnteger did the hard work for you.

The package-private mutable companion class approach works fine if you can

accurately predict which complex operations clients will want to perform on your

immutable class. If not, then your best bet is to provide a public mutable

companion class. The main example of this approach in the Java platform libraries

is the String class, whose mutable companion is StringBuilder (and its

obsolete predecessor, St ri n gBu f fe r).
Now that you know how to make an immutable class and you understand the

pros and cons of immutability, let's discuss a few design alternatives. Recall that

to guarantee immutability, a class must not permit itself to be subclassed. This can

be done by making the class final, but there is another, more flexible alternative.

Instead of making an immutable class final, you can make all of its constructors

private or package-private and add public static factories in place of the public

constructors (Item 1). To make this concrete, here's how Comp'lex would look if
you took this approach:

// Inmutable class with static factories instead of constructors
pub'l'ic cl ass Compl ex {

private final double re;
private final double im;

private Complex(double re, double im) {
this.re = re;
this.im = im;

]
public static Complex valueOf(double re, doub'le im) {

return new ComPlex(re, im);
i
... // Remainder unchanged

]

ITEM 18: FAVoR COMPOSITION OVER INHERITANCE 87

)r composition over inheritance

rwerful way to achieve code reuse, but it is not always the best

sed inappropriately, it leads to fragile software. It is safe to use

---^-.. a package, where the subclass and the superclass implementa-
tions are under the control of the same programmers. It is also safe to use inheri-
tance when extending classes specifically designed and documented for extension
(Item 19). Inheriting from ordinary concrete classes across package boundaries,

however, is dangerous. As a reminder, this book uses the word "inheritance" to
mean implementation inheritance (when one class extends another). The problems

discussed in this item do not apply to interface inheritance (when a class imple-
ments an interface or when one interface extends another).

Unlike method invocation, inheritance violates encapsulation [Snyder86].
In other words, a subclass depends on the implementation details of its superclass

for its proper function. The superclass's implementation may change from release

to release, and if it does, the subclass may break, even though its code has not
been touched. As a consequence, a subclass must evolve in tandem with its
superclass, unless the superclass's authors have designed and documented it
specifically for the purpose of being extended.

To make this concrete, let's suppose we have a program that uses a HashSet.
To tune the performance of our program, we need to query the HashSet as to how
many elements have been added since it was created (not to be confused with its
current size, which goes down when an element is removed). To provide this
functionality, we write a HashSet variant that keeps count of the number of
attempted element insertions and exports an accessor for this count. The HashSet
class contains two methods capable of adding elements, add and addAll, so we
override both of these methods:

// Broken - Inappropriate use of inheritance!
public class InstrumentedHashSet<E> extends HashSet<b {

// The number of attempted element insertions
private int addCount = 0;

public InstrumentedHashSetO {
]

public InstrumentedHashSet(int initCap, float loadFactor) {
super('i nitCap, loadFactor) ;

]

86 CHAPTER4 CI.4SSESANDINTERFACES

objectlnputstream'readUnsharedmethods,evenifthedefaultserializedform
is acceptable. otherwise an attacker could create a mutable instance of your class'

This topic is covered in detail in Item 88'

Tosummarize,resisttheurgetowriteasettefforeverygettet'Classesshould
be immutable unless there's a very good reason to make them mutable'

Immutable classes provide many advantages, and their only disadvantage is the

potential for performan"e p.obiems under certain circumstances. You should

alwaysmakesmallvalueobjects,suchasPhoneNumberandComp.lex,immutable.
(There are several classes in the Java platform libraries, such as j ava. uti] ' Date

andjava.awt.Point,thatshouldhavebeenimmutablebutaren't')Youshould
seriouslyconsidermakinglægervalueobjects,suchasStringandBiglnteger,
immutableaswell.Youshouldprovideapublicmutablecompanionclassforyour
immutablec|assonlyonceyou,veconfirmedthatit,snecessarytoachievesatis-
factory Performance (Item 67)'

Therearesomeclassesforwhichimmutabilityisimpractical.Ifaclass
cannot be made immutable,limit its mutability as much as possible. Reducing

thenumberofstatesinwhichanobjectcanexistmakesiteasiertoreasonabout
the object and reduces the likelihood of errors. Therefore, make every field final

unlessthereisu.o*p"rringreasontomakeitnonfinal'Combiningtheadviceof
this item with that of Item 15, your natural inclination should be to declare every

field private final unless there's a good reason to do otherwise'

constructors should create futly initialized objects with all of their invari'

ants established. Don't provide a public initialization method separate from the

constructor or static factory unless lhere is a compellingfeason to do so' Similarly'

don,t provide a ..reinitiafiLe,, method that enables an object to be reused as if it

had been constructed with a different initial state. Such methods generally provide

little if any performance benefit at the expense of increased complexity'

TheCountDownlatchclassexemplifiestheseprinciples.Itismutable'butits
state space is kept intentionally small. You create an instance, use it once' and it's

done: once the countdown latch's count has reached zero' you may not reuse it'

AfinalnoteshouldbeaddedconcerningtheComp.lexclassinthisitem.This
example was meant only to illustrate immutability' It is not an industrial-strength

complex number implËmentation. It uses the standard formulas for complex

multiplication and division, which are not correctly rounded and provide poor

semanticsforcomplexNaNsandinfinities[Kahan91,Smith62,Thomas94].

