
50 CHAPTER3 METHODSCOMMONTOALLOBJECTS

Item LL: Always override hashCode when you override equal s

You must override hashCode in every class that overrides equal s. If you fail to
do so, your class will violate the general contract for hashCode, which will
prevent it from functioning properly in collections such as HashMap and HashSet.
Here is the contract, adapted from the Obj ect specification :

. When the hashCode method is invoked on an object repeatedly during an
execution of an application, it must consistently return the same value,
provided no information used in equal s comparisons is modified. This value
need not remain consistent from one execution of an application to another.

. If two objects are equal according to the equal s (0b j ect) method, then call-
ing hashCode on the two objects must produce the same integer result.

. If two objects are unequal according to the equal s (Obj ect) method, it is not
required that calling hashCode on each of the objects must produce distinct
results. However, the programmer should be aware that producing distinct
results for unequal objects may improve the performance of hash tables.

The key provision that is violated when you fail to override hashCode is
the second one: equal objects must have equal hash codes. Two distinct
instances may be logically equal according to a class's equal s method, but to
Object's hashCode method, they're just two objects with nothing much in
common. Therefore, Object's hashCode method returns two seemingly random
numbers instead of two equal numbers as required by the contract.

For example, suppose you attempt to use instances of the PhoneNumber class

from Item 10 as keys in a Hashlt4ap:

Map<PhoneNumber, String> m = hêw HashMap+O;
m. put(new PhoneNumbe r(707 , 867 , 5309), "Jenny") ;

At this point, you might expect m . get (new PhoneNumbe r (707,867, 5 309) ) to
return "Jenny", but instead, it returns null. Notice that two PhoneNumber

instances are involved: one is used for insertion into the HashMap, and a second,

equal instance is used for (attempted) retrieval. The PhoneNumbe r class's failure to
override hashCode causes the two equal instances to have unequal hash codes, in
violation of the hashCode contract. Therefore, the get method is likely to look for
the phone number in a different hash bucket from the one in which it was stored

by the put method. Even if the two instances happen to hash to the same bucket,
the get method will almost cerlainly return nu11, because HashMap has an optimi-
zation that caches the hash code associated with each entry and doesn't bother
checking for object equality if the hash codes don't match.

ITEM 1 ]: ALWAYS OVERRIDE HASHCODE WHEN YOU OVERRIDE EQUALS 5 1

Fixing this problem is as simple as writing a proper hashCode method for
PhoneNumber. So what should a hashCode method look like? It's trivial to write a
bad one. This one, for example, is always legal but should never be used:

// The worst possible legal hashCode implementation - never use!
@0verride public int hashCodeO { return 42; }
It's legal because it ensures that equal objects have the same hash code. It's

atrocious because it ensures that every object has the same hash code. Therefore,

every object hashes to the same bucket, and hash tables degenerate to linked lists.

Programs that should run in linear time instead run in quadratic time. For large

hash tables, this is the difference between working and not working.
A good hash function tends to produce unequal hash codes for unequal

instances. This is exactly what is meant by the third part of the hashCode contract.

Ideally, a hash function should distribute any reasonable collection of unequal

instances uniformly across all i nt values. Achieving this ideal can be difficult.
Luckily it's not too hard to achieve a fair approximation. Here is a simple recipe:

1. Declare an i nt variable named resul t, and initialize it to the hash code c for
the first significant field in your object, as computed in step 2.a. (Recall from
Item 10 that a significant field is a field that affects equals comparisons.)

2. For every remaining significant field f in your object, do the following:

a. Compute an i nt hash code c for the field:

i. If the field is of a primitive type, compute Type.hashCode (f), where

Type is the boxed primitive class corresponding to f's type.

ii. If the field is an object reference and this class's equal s method

compares the field by recursively invoking equa'ls, recursively
invoke hashCode on the field. If a more complex comparison is

required, compute a "canonical representation" for this field and

invoke hashCode on the canonical representation. If the value of the

field is nu11, use 0 (or some other constant, but 0 is traditional).

iii. If the field is an array, treat it as if each significant element were a

separate field. That is, compute a hash code for each significant
element by applying these rules recursively, and combine the values

per step 2.b.If the array has no significant elements, use a constant,

preferably not 0. If all elements are significant, use Arrays . hashCode.

b. Combine the hash code c computed in step 2.ainto resul t as follows:

result = 3l- r. result + c;

3. Return result.



ITEM 1 1: ALWAYS OVERRIDE HASHCODE WHEN YoU )VERRIDE EQUALS 5 1

Fixing this problem is as simple as writing a proper hashcode method for
PhoneNumber. So what should a hashCode method look like? It's trivial to write a
bad one. This one, for example, is always legal but should never be used:

// The worst possible legal hashcode implementation - never use!
@Override public int hashCodeO { return 42; }
It's legal because it ensures that equal objects have the same hash code. It's

atrocious because it ensures that every object has the same hash code. Therefore,
every object hashes to the same bucket, and hash tables degenerate to linked lists.
Programs that should run in linear time instead run in quadratic time. For large
hash tables, this is the difference between working and not working.

A good hash function tends to produce unequal hash codes for unequal
instances. This is exactly what is meant by the third part of the hashCode contract.
Ideally, a hash function should distribute any reasonable collection of unequal
instances uniformly across all i nt values. Achieving this ideal can be difficult.
Luckily it's not too hard to achieve a fair approximation. Here is a simple recipe:

1. Declare an i nt variable named resul t, and initialize it to the hash code c for
the first significant field in your object, as computed in step 2.a. (Recall from
Item 10 that a significant field is a field that affects equals comparisons.)

2. For every remaining significant field f in your object, do the following:
a. Compute an i nt hash code c for the field:

i. If the field is of a primitive type, compute Type.hashCode (f), where
Type is the boxed primitive class corresponding to f ,s type.

ii. If the field is an object reference and this class's equal s method
compares the field by recursively invoking equal s, recursively
invoke hashcode on the field. If a more complex comparison is
required, compute a "canonical representation" for this field and
invoke hashCode on the canonical representation. If the value of the
field is nu11, use 0 (or some other constant, but 0 is traditional).

iii. If the field is an array, treat it as if each significant element were a
separate field. That is, compute a hash code for each significant
element by applying these rules recursively, and combine the values
per step 2.b.lf the array has no significant elements, use a constant,
preferably not 0. If all elements are significant, use Arrays . hashcode.

b. combine the hash code c computed in step 2.a into resul t as follows:
result = 3l_ ,t result + c;

3. Return result.

50 CHAPTER3 METHODSCOMMONTOALLOBJECTS

Item 11,: Atways override hashcode \ilhen you override equa-l s

You must override hashCode in every class that overrides equal s' If you fail to

do so, your class will violate the general contract for hashCode, which will

prevent it from functioning properly in collections such as HashMap and HashSet'

Here is the contract, adapted from the Object specification :

. When the hashCode method is invoked on an object repeatedly during an

execution of an application, it must consistently return the same value,

provided no informaiion used in equa'ls comparisons is modified' This value

need not remain consistent from one execution of an application to another'

. If two objects are equal according to the equal s (Ob j ect) method, then call-

ing hashCode on thè two objects must produce the same integer result.

. If two objects are unequal according to the equal s (Obj ect) method, itis not

required that calling hashCode on each of the objects must produce distinct

results. However, the programmer should be aware that producing distinct

results for unequal objects may improve the performance of hash tables'

The key provision that is violated when you fail to override hashCode is

the second one: equal objects must have equal hash codes. Two distinct

instances may be logically equal according to a class's equal s method' but to

object's hashCode method, they're just two objects with nothing much in

common. Therefore, Object's hashCode method returns two seemingly random

numbers instead of two equal numbers as required by the contract.

For example, suppose you attempt to use instances of the PhoneNumber class

from Item 10 as keYs in a HashMaP:

Map<PhoneNumber, String> m = new HashMap+O;
m. put(new PhoneNumbe r(707 , 867, 5309) , "Jenny") ;

At this point, you might expect m. get(new PhoneNumbe r(707,867, 5309)) to

return "Jenny", but instead, it returns null. Notice that two PhoneNumber

instances are involved: one is used for insertion into the HashMap, and a second,

equal instance is used for (attempted) retrieval. The PhoneNumber class's failure to

override hashCode causes the two equal instances to have unequal hash codes, in

violation of the hashcode contract. Therefore, the get method is likely to look for

the phone number in a different hash bucket from the one in which it was stored

by the put method. Even if the two instances happen to hash to the same bucket'

the get method will almost certainly return nu11, because HashMap has an optimi-

zation that caches the hash code associated with each entry and doesn't bother

checking for object equality if the hash codes don't match'



ITEM 1 I: ALWAYS OVERRIDE HASHCODE WHEN YoU OVERRIDE E?UALS 53

The Objects class has a static method that takes an arbitrary number of
objects and returns a hash code for them. This method, named hash, lets you write
one-line hashCode methods whose quality is comparable to those written accord-
ing to the recipe in this item. unfortunately, they run more slowly because they
entail array creation to pass a variable number of arguments, as well as boxing and
unboxing if any of the arguments are of primitive type. This style of hash function
is recommended for use only in situations where performance is not critical. Here
is a hash function for PhoneNumber written using this technique:

// One-1ine hashCode method - mediocre performance
@Override public int hashCodeO {

return Objects.hash(lineNum, prefix, areaCode) ;

]
If a class is immutable and the cost of computing the hash code is significant,

you might consider caching the hash code in the object rather than recalculating it
each time it is requested. If you believe that most objects of this type will be used
as hash keys, then you should calculate the hash code when the instance is created.
Otherwise, you might choose to lazily initialize the hash code the first time hash-
Code is invoked. Some care is required to ensure that the class remains thread-safe
in the presence of alazlly initialized field (Item 83). Our PhoneNumber class does
not merit this treatment, but just to show you how it's done, here it is. Note that the
initial value for the hashcode field (in this case, 0) should not be the hash code of
a commonly created instance:

// hashCode method with lazily initialized cached hash code
private 'int hashCode; // Automatically initialized to 0

@Override public 'int hashCodeO {
int result = hashCode;
if (result == 0) {

resul t = Short . hashCode (areaCode) ;

result = 31 * result + Short.hashCode(prefix);
result = 31 ,t result + Short.hashCode(lineNum);
hashCode = result;

]
return result;

]

Do not be tempted to exclude signifïcant fields from the hash code com-
putation to improve performance. while the resulting hash function may run
faster, its poor quality may degrade hash tables' performance to the point where
they become unusable. In particular, the hash function may be confronted with a

52 CHAPTER3 METHODSCOMMONTOALLOB,IECTS

When you are finished writing the hashCode method, ask yourself whether

equal instances have equal hash codes. write unit tests to verify your intuition

(unlers you used AutoValue to generate your equals and hashcode methods, in

which case you can safely omit these tests). If equal instances have unequal hash

codes, figure out why and fix the problem.

You may exclude derived fields ftom the hash code computation. In other

words, you may ignore any field whose value can be computed from fields included

in the computation. You must exclude any fields that are not used in equal s com-

parisons, or you risk violating the second provision ofthe hashcode contract.

The multiplication in step 2.b makes the result depend on the order of the

fields, yielding a much better hash function if the class has multiple similar fields'

For example, if the multiplication were omitted from a Stfling hash function, all

anagrams would have identical hash codes. The value 31 was chosen because it is

un àoo prime. If it were even and the multiplication overflowed, information

would be lost, because multiplication by 2 is equivalent to shifting. The advantage

of using a prime is less clear, but it is traditional. A nice property of 31 is that the

multiplication can be replaced by a shift and a subtraction for better performance

on some architecturesi 31 i. i := (i << 5) - i . Modern VMs do this sort of optimi-

zation automaticallY.

Let's apply the previous recipe to the PhoneNumber class:

// Typical hashCode method
@0verride Public int hashCodeO {

int result = Short.hashCode(areaCode) ;

result = 31 r. result + Short.hashCode(prefix);
result = 31 * result + Short.hashCode(lineNum);
return resul t;

]

Because this method returns the result of a simple deterministic computaûon

whose only inputs are the three significant fields in a PhoneNumber instance, it is

clear that equal PhoneNumber instances have equal hash codes. This method is, in

facl, a perfectly good hashcode implementation for PhoneNumber, on par with

those in the Java platform libraries. It is simple, is reasonably fast, and does a

reasonable job of dispersing unequal phone numbers into different hash buckets'

While the recipe in this item yields reasonably good hash functions, they are

not state-of-the-art. They are comparable in quality to the hash functions found in

the Java platform libraries' value types and are adequate for most uses. If you have

a bona fide need for hash functions less likely to produce collisions, see Guava's

com. goog'le. common. hash . Hashi ng [Guava]'



ITEM 1 1: ALWAYS OVERRIDE HASHCODE WHEN yOU OVERRIDE EOUALS 53

The Objects class has a static method that takes an arbitrary number of
objects and returns a hash code for them. This method, named hash, lets you write
one-line hashCode methods whose quality is comparable to those written accord-
ing to the recipe in this item. unfortunately, they run more slowly because they
entail array creation to pass a variable number of arguments, as well as boxing and
unboxing if any of the arguments are of primitive type. This style of hash function
is recommended for use only in situations where performance is not critical. Here
is a hash function for PhoneNumber written using this technique:

// One-line hashCode method - mediocre performance
@Override public int hashCodeO {

return Objects.hash(lineNum, prefix, areaCode) ;

]
If a class is immutable and the cost of computing the hash code is significant,

you might consider caching the hash code in the object rather than recalculating it
each time it is requested. If you believe that most objects of this type will be used
as hash keys, then you should calculate the hash code when the instance is created.
Otherwise, you might choose to lazily initialize the hash code the first time hash-
Code is invoked. Some care is required to ensure that the class remains thread-safe
in the presence of alazily initialized field (Item 83). Our PhoneNumber class does
not merit this treatment, but just to show you how it's done, here it is. Note that the
initial value for the hashCode field (in this case, 0) should not be the hash code of
a commonly created instance:

// hashCode method with lazily initialized cached hash code
private int hashCode; // Automatically initialized to 0

@Override public int hashCodeO {
int result = hashCode;
if (result == 0) {

result = Short. hashCode(areaCode) ;

result = 31 ,t result + Short.hashCode(prefix);
result = 31 ,t result + Short.hashCode(lineNum);
hashCode = result;

]
return result;

]

Do not be tempted to exclude signifïcant fields from the hash code com-
putation to improve performance. While the resulting hash function may run
faster, its poor quality may degrade hash tables' performance to the point where
they become unusable. In particular, the hash function may be confronted with a

52 CHAPTER 3 METHODS COMMON TO ALLOB.IECTS

when you are finished writing the hashcode method, ask yourself whether

equal instances have equal hash codes. write unit tests to verify your intuition

(unless you used Autovalue to generate your equal s and hashcode methods, in

which case you can safely omit these tests). If equal instances have unequal hash

codes, figure out why and fix the problem.

You may exclude derived fields ftom the hash code computation. In other

words, you may ignore any field whose value can be computed from fields included

in the computation. You must exclude any fields that are not used in equa'ls com-

parisons, or you risk violating the second provision of the hashcode contract.

The multiplication in step 2.b makes the result depend on the order of the

fields, yielding a much better hash function if the class has multiple similar fields.

For example, if the multiplication were omitted from a Stri ng hash function, all

anagrams would have identical hash codes. The value 31 was chosen because it is

un àOO prime. If it were even and the multiplication overflowed, information

would be lost, because multiplication by 2 is equivalent to shifting. The advantage

of using a prime is less clear, but it is traditional. A nice property of 31 is that the

multiplication can be replaced by a shift and a subtraction for better performance

on some architectures: 3L ,t i == (i << 5) - i. Modern VMs do this sort of optimi-

zation automaticallY.

Let's apply the previous recipe to the PhoneNumber class:

// Typical hashcode method
@Override public int hashCodeO {

int result = Short.hashCode(areaCode) ;

result = 31 't result + Short.hashCode(prefix);
result = 3l- *, result + Short'hashCode(lineNum);
return result;

]

Because this method returns the result of a simple deterministic computation

whose only inputs are the three significant fields in a PhoneNumber instance, it is

clear that equal PhoneNumber instances have equal hash codes. This method is, in

fact, a perfectly good hashCode implementation for PhoneNumber, on par with

those in the Java platform libraries. It is simple, is reasonably fast, and does a

reasonablejob of dispersing unequal phone numbers into different hash buckets.

While the recipe in this item yields reasonably good hash functions, they are

not state-of-the-art. They are comparable in quality to the hash functions found in

the Java platform libraries' value types and are adequate for most uses' Ifyou have

a bona fide need for hash functions less likely to produce collisions, see Guava's

com. googl e . common . hash . Hash'ing [Guava].

/

')



ITEM ]2: ALWAYS OVERRIDETOSTRING 55

Iteml2: Always override toStr-ing

While 0b j ect provides an implementation of the toSt ri ng method, the string that
it returns is generally not what the user of your class wants to see. It consists of the
class name followed by an "at" sign (@) and the unsigned hexadecimal repïesenta-
tion of the hash code, for example, phoneNumbe r@L63b9L. The general contract for
tostri ng says that the returned string should be "a concise but informative repre-
sentation that is easy for a person to read." while it could be argued that
PhoneNumber@1-63b91- is concise and easy to read, it isn't very informative when
compared to 707 -867 -5 309. The tost ri ng contract goes on to say, ,,It is recom-
mended that all subclasses override this method." Good advice, indeed!

While it isn't as critical as obeying the equal s and hashCode contracts (Items
10 and 11), providing a good tostring implementation makes your class
much more pleasant to use and makes systems using the class easier to debug.
The tostring method is automatically invoked when an object is passed to
pri nt1 n, pri ntf, the string concatenation operator, or assert, or is printed by a
debugger. Even if you never call tostri ng on an object, others may. For example,
a component that has a reference to your object may include the string representa-
tion of the object in a logged effor message. If you fail to override tostri ng, the
message may be all but useless.

If you've provided a good tostring method for phoneNumber, generating a
useful diagnostic message is as easy as this:

System.out.print'ln("Failed to connect to ', + phoneNumber);

Programmers will generate diagnostic messages in this fashion whether or not
you override tostri ng, but the messages won't be useful unless you do. The ben-
efits of providing a good toString method extend beyond instances of the class to
objects containing references to these instances, especially collections. Which
would you rather see when printing a map, {Jenny=plsneNumber@l_63b91} or
{J enny=7 q7 - 867 - 5 309} ?

When practical, the toString method should return aU of the interesting
information contained in the object, as shown in the phone number example. It
is impractical if the object is large or if it contains state that is not conducive to
string representation. Under these circumstances, tostring should return a sum-
mary such as Manhattan residential phone d'irectory (i-4g7536 listings)
or Thread[main,S,main]. Ideally, the string should be self-explanatory. (The
Thread example flunks this test.) A particularly annoying penalty for failing to

54 CHAPTER3 METHODSCOMMONTOALLOB.IECTS

large collection of instances that differ mainly in regions you've chosen to ignore'

If this happens, the hash function will map all these instances to a few hash codes,

and programs that should run in linear time will instead run in quadratic time.

This is not just a theoretical problem. Prior to Java 2, the St ri ng hash func-

tion used at most sixteen characters evenly spaced throughout the string, starting

with the first character. For large collections of hierarchical names, such as URLs,

this function displayed exactly the pathological behavior described earlier.

Don't provide a detailed specification for the value returned by hashCode'

so clients can't reasonably depend on it; this gives you the flexibility to

change it. Many classes in the Java libraries, such as String and Integer, specify

the exact value returned by their hashCode method as a function of the instance

value. This is not a good idea but a mistake that we're forced to live with: It

impedes the ability to improve the hash function in future releases. If you leave

the details unspecified and a flaw is found in the hash function or a better hash

function is discovered, you can change it in a subsequent release.

In summary,yo;g must override hashcode every time you override equa'l s, or

your program will not run correctly. Your hashCode method must obey the general

contract specified in Object and must do a reasonablejob assigning unequal hash

codes to unequal instances. This is easy to achieve, if slightly tedious, using the

recipe on page 51. As mentioned in Item 10, the AutoValue framework provides a

fine alternative to writing equal s and hashCode methods manually, and IDEs also

provide some of this functionality.


